SOTA CONVOLUTIONAL NEURAL NETWORK

Chih-Chung Hsu (許志仲) Institute of Data Science National Cheng Kung University https://cchsu.info

Last 2 lectures: Training neural networks

- One time setup
 - activation functions, preprocessing, weight initialization, regularization, gradient checking
- Training dynamics
 - babysitting the learning process,
 - parameter updates, hyperparameter optimization
- Evaluation
 - model ensembles, test-time augmentation

"You need a lot of a data if you want to train/use CNNs"

"You need a lot of a data if you want to trainfuse CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
IVIAXPOOI	
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv-128	

MaxPool

Conv-64

Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-256	
Conv-256	
MaxPool	
Conv-128	

Conv-128

MaxPool

Conv-64

Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset	very different dataset
Conv-512MaxPoolConv-512Conv-512MaxPoolConv-256Conv-256MaxPool	very little data	?	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	?	?

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset	very different dataset
Conv-512MaxPoolConv-512Conv-512MaxPoolConv-256Conv-256MaxPool	very little data	Use Linear Classifier on top layer	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	?

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception) Object Detection

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission.

Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

2024/4/15

Transfer learning with CNNs is pervasive...

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-SemanticAlignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...

Transfer learning with CNNs is pervasive... But recent results show it might not always be necessary!

He et al, "Rethinking ImageNet Pre-training", arXiv 2018

Takeaway for your projects and beyond:

- Have some dataset of interest but it has < ~1M images?</p>
- Find a very large dataset that has similar data, train a big ConvNet there
- Transfer learn to your dataset
- Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own
- TensorFlow: <u>https://github.com/tensorflow/models</u>
- PyTorch: <u>https://github.com/pytorch/vision</u>

Today: CNN Architectures

- Case Studies
 - AlexNet
 - VGG
 - GoogLeNet
 - ResNet
- Also....
 - SENet
 - NiN (Network in Network)
 - Wide ResNet
 - ResNeXT
 - DenseNet
 - FractalNet
 - MobileNets
 - NASNet
 - SK/EfficientNet/ViT,...never stop

Review: LeNet-5

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

- Convolution:
 - Input feature maps: C∗H∗W → N-channeled output feature maps
 - #parameters: N * C * K * K
- Group convolution:
 - #parameters: N * (C/G) * K * K (G=#groups)

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 => Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Review: AlexNet

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Chih-Chung Hsu@ACVlab

Input: 227x227x3 images

Q: Why 227*227? Not 256*256?

Data augmentation: Randomly cropping!! Assumed that the input size = 256*256 We randomly crop the image sized of 227*227

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 =>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 =>

Output volume **[55x55x96]** Parameters: (11*11*3)*96 = **35K**

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2 Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2 Output volume: 27x27x96 Parameters: 0!

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

. . .

Full (simplified) AlexNet architecture:

[227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Case Study: AlexNet [Krizhevsky et al. 2012] dense 192 2045 128 128 127 dense dense TTOP 192 Full (simplified) AlexNet architecture: 192 128 Max 2048 pooling 2048 Max Max 128 poolina pooling [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 **Details/Retrospectives:** [27x27x96] MAX POOL1: 3x3 filters at stride 2 -first use of Rel U [27x27x96] NORM1: Normalization layer -used Norm layers (not common anymore) [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 -heavy data augmentation [13x13x256] MAX POOL2: 3x3 filters at stride 2 -dropout 0.5 [13x13x256] NORM2: Normalization layer -batch size 128 [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 -SGD Momentum 0.9 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 -Learning rate 1e-2, reduced by 10 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 manually when val accuracy plateaus [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons - L2 weight decay 5e-4 - 7 CNN ensemble: 18.2% -> 15.4% [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

2024/4/15

30

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Zeiler and Fergus, 2013]

ZFNet

AlexNet but: CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

VGGNet [Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

Softmax FC 1000 FC 4096 FC 4096

Pool

Input

AlexNet

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax

FC 1000 FC 4096 FC 4096

Pool

Pool

Pool

AlexNet

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

[7x7]

Softmax FC 1000 FC 4096

FC 4096

Pool

Pool

Pool

Input

AlexNet

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7²C² for C channels per layer

Softmax FC 1000 FC 4096

FC 4096 Pool

Pool

Input

(not counting biases)

#Parameters (not counting biases)

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

#Parameters (not counting biases)

VGGNet

Details

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

				Softmax
				FC 1000
			Softmax	FC 4096
		fc8	FC 1000	FC4096
		fc7	FC 4096	Pool
		fc6	FC 4096	3x3 conv, 512
			Pool	3x3 conv, 512
		conv5-3	3x3 conv, 512	3x3 conv, 512
		conv5-2	3x3 conv, 512	3x3 conv, 512
		conv5-1	3x3 conv, 512	Pool
			Pool	3x3 conv, 512
1	Softmax	conv4-3	3x3 conv, 512	3x3 conv, 512
	FC 1000	conv4-2	3x3 conv, 512	3x3 conv, 512
fc7	FC 4096	conv4-1	3x3 conv, 512	3x3 conv, 512
fc6	FC 4096		Pool	Pool
	Pool	conv3-2	3x3 conv, 256	3x3 conv, 256
conv5	3x3 conv, 256	conv3-1	3x3 conv, 256	3x3 conv, 256
conv4	3x3 conv, 384		Pool	Pool
	Pool	conv2-2	3x3 conv, 128	3x3 conv, 128
conv3	3x3 conv, 384	conv2-1	3x3 conv, 128	3x3 conv, 128
	Pool		Pool	Pool
conv2	5x5 conv, 256	conv1-2	3x3 conv, 64	3x3 conv, 64
conv1	11x11 conv, 96	conv1-1	3x3 conv, 64	3x3 conv, 64
	Input		Input	Input
	AlexNet		VGG16	VGG19

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters! 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

 "Inception module" : design a good local network topology (network within a network) and then stack these modules on top of each other

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Q: What is the problem with this? [Hint: Computational complexity]

Example:

Q: What is the problem with this? [Hint: Computational complexity]

Q1: What is the output size of the 1x1 conv, with 128 filters?

Naive Inception module

GoogLeNet

[Szegedy et al., 2014]

Example:

28x28x(128+192+96+256) = 28x28x672=**529K**

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Q1: What is the output size of the 1x1 conv, with 128 filters?

Q2: What are the output sizes of all different filter operations?

Q3:What is output size after filter concatenation?

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256 **Total: 854M ops**

GoogLeNet

[Szegedy et al., 2014]

Example:

Naive Inception module

Conv Ops: [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256 Total: 854M ops

Very expensive compute

Pooling layer also preserves feature depth, which means total depth after concatenation can only grow at every layer!

SOLUTION: "BOTTLENECK" LAYERS THAT USE 1X1 CONVOLUTIONS TO REDUCE FEATURE DEPTH

Reminder: 1x1 convolutions

Reminder: 1x1 convolutions

Inception module with dimension reduction

Using same parallel layers as naive example, and adding "1x1 conv, 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256 **Total: 358M ops**

Compared to 854M ops for naive version Bottleneck can also reduce depth after pooling layer

Stack Inception modules with dimension reduction on top of each other

22 total layers with weights (including each parallel layer in an Inception module)

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- 12x less params than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

3x3 conv. 64

3x3 conv. 64

3x3 conv, 64

3x3 conv 64

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 1287 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64

> 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64

> > Input

3x3 conv

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Q: What's strange about these training and test curves? [Hint: look at the order of the curves]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!
Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

Softma

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

- Training ResNet in practice:
 - Batch Normalization after every CONV layer
 - Xavier/2 initialization from He et al.
 - SGD + Momentum (0.9)
 - Learning rate: 0.1, divided by 10 when validation error plateaus
 - Mini-batch size 256
 - Weight decay of 1e-5
 - No dropout used

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

• 1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

• 1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: Highest memory, most operations

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet: most efficient

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet: Smaller compute, still memory heavy, lower accuracy

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet: Moderate efficiency depending on model, highest accuracy

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Forward pass time and power consumption

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners Network ensembling

Improving ResNets...

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, Wide Resnet models
- ILSVRC'16 classification winner
- "Good Practices for Deep Feature Fusion"

	Inception- v3	Inception- v4	Inception- Resnet-v2	Resnet- 200	Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners Adaptive feature map reweighting

Improving ResNets... Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

- Add a "feature recalibration" module that
 learns to adaptively reweight feature maps
- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC'17 classification winner (using ResNeXt-152 as a base architecture)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

BUT RESEARCH INTO CNN ARCHITECTURES IS STILL FLOURISHING

Of historical note... Network in Network (NiN)

[Lin et al. 2014]

- Mlpconv layer with "micronetwork" within each conv layer to compute more abstract features for local patches
- Micronetwork uses multilayer perceptron
- Precursor to GoogLeNet and ResNet "bottleneck" layers
- Philosophical inspiration for GoogLeNet

Figures copyright Lin et al., 2014. Reproduced with permission.

Identity Mappings in Deep Residual Networks

[He et al. 2016]

- Improving ResNets...
- Improved ResNet block design from creators of ResNet
- Creates a more direct path for propagating information throughout network (moves activation to residual mapping pathway)
- Gives better performance

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms
 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)

Basic residual block

Wide residual block

Neural Networks (ResNeXt)

[Xie et al. 2016]

- Aggregated Residual Transformations for Deep
- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways ("cardinality")
- Parallel pathways similar in spirit to Inception module

FractalNet: Ultra-Deep Neural Networks without Residuals

[Larsson et al. 2017]

- Argues that key is transitioning effectively from shallow to deep and residual representations are not necessary
- Fractal architecture with both shallow and deep paths to output
- Trained with dropping out sub-paths
- Full network at test time

Figures copyright Larsson et al., 2017. Reproduced with permission.

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
- Best paper in CVPR 2017!!

Dense Block: Densely Connected

Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.
Dense Block

- Why it is excellent?
- Feature reuse!!
 - Multiscale feature representation
 - Recall that: two $3x3 \text{ conv} \rightarrow 5x5 \text{ conv}$, three $3x3 \text{ conv} \rightarrow 7x7 \text{ conv}$.

Problem in DenseNet (cont.)

- Dense connection is performed in a dense block
 - Same feature map size
- Pooling (by max-pooling or strided conv.) between two dense blocks
- ResNet/DenseNet: Feature map reusing (large memory usage)

DenseNet

Layers	Output Size	DenseNet-121 $(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201 $(k = 32)$	DenseNet-161 $(k = 48)$		
Convolution	112×112	7×7 conv, stride 2					
Pooling	56 × 56	3×3 max pool, stride 2					
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$		
Transition Layer	1 Layer 56×56 1×1 conv			conv			
(1)	28×28	2×2 average pool, stride 2					
Dense Block (2)	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$		
Transition Layer	28×28	1×1 conv					
(2)	14×14	2×2 average pool, stride 2					
Dense Block (3)	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 36$		
Transition Layer	14×14	1×1 conv					
(3)	7 × 7	2×2 average pool, stride 2					
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$		
Classification	1×1	7×7 global average pool					
Layer		1000D fully-connected, softmax					

SKNet (Selective Kernel Convolution)

[Li et al. 2019]

Similar to SENet Get the channeled-features and use split-attention to automatically decide which channel is important!

ResNeSt : Split-Attention Networks

ResNeSt : Split-Attention Networks

[Zhang et al. 2020]

Combine different existing modules

- Multi-path module in Inception
 - Different kernel sizes
 - Group conv. is used.
- Feature map attention (SKNet)
- Channel attention (SENet)

Efficient networks...

[Howard et al. 2017]

- Depthwise separable convolutions replace standard convolutions by factorizing them into a depthwise convolution and a 1x1 convolution that is much more efficient
- Much more efficient, with little loss in accuracy
- Follow-up MobileNetV2 work in 2018 (Sandler et al.)
- Other works in this space e.g. ShuffleNet (Zhang et al. 2017)
- Latest: EfficientNet-b7
- Latest: RegNet (Statics for search range, [He et.al., 2020])

MobileNets: Efficient Convolutional Neural Networks for Mobile Applications

Depth-wise **separable** Convolution

[Howard et al. 2017]

SOTA for Image Recognition (2020)

SOTA for Image Recogni

- Meta pseudo label
- Self-supervised learning
- Trained on 2,048 TPUv3 cores...????WT
 - [Google 2021]
- DeepMine proposed NFNet
- Without normalization!!
 - Normalizer-Free ResNet
- AGC (gradient clip) [2021]
- EfficientNet v2

2024/4/15

Public Benchmark (2023) of ImageNet Validation Set

AGC (Adaptive Gradient Clipping) for NFNet

Other than SOTA CNNs

- Visual Transformer [ICLR 2021]!!
 - A feed-forward network for visual information without CNNs
 - Transformer: we talk it later

What's Different?

Visual Transformer

To make fully connected layer great again!!

q: query (to match others) $q^i = W^q a^i$ k: key (to be matched) $k^i = W^k a^i$ v: information to be extracted $v^i = W^v a^i$

ViT - Input Section

 $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$

$$x_p \in \mathbb{R}^{N \times (P^2 \cdot C)}$$

 $N = HW/P^2$

ViT - Transformer Encoder

A learnable embedding is added to the sequence of embedded patches $(z_0^0 = x_{class})$, where state at the output of the Transformer encoder (z_L^0) serves as the image representation y (Eq. 4).

Layer-norm (LN) is applied before every block, and residual connections after every block.

The MLP (Fully-connected layer) contains two layers with a GELU nonlinearity.

$$\begin{aligned} \mathbf{z}_{0} &= [\mathbf{x}_{\text{class}}; \, \mathbf{x}_{p}^{1} \mathbf{E}; \, \mathbf{x}_{p}^{2} \mathbf{E}; \cdots; \, \mathbf{x}_{p}^{N} \mathbf{E}] + \mathbf{E}_{pos}, & \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D} \\ \mathbf{z}_{\ell}^{\prime} &= \mathrm{MSA}(\mathrm{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, & \ell = 1 \dots L \\ \mathbf{z}_{\ell} &= \mathrm{MLP}(\mathrm{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, & \ell = 1 \dots L \\ \mathbf{y} &= \mathrm{LN}(\mathbf{z}_{L}^{0}) \end{aligned}$$

CLS token

Hybrid Architecture : Raw image patches --> Feature map of a CNN

LN & GELU

```
class LayerNorm(nn.Module):
```

```
def __init__(self, features, eps=1e-6):
    super(LayerNorm, self).__init__()
    self.a_2 = nn.Parameter(torch.ones(features))
    self.b_2 = nn.Parameter(torch.zeros(features))
    self.eps = eps
```

```
def forward(self, x):
    mean = x.mean(-1, keepdim=True)
    std = x.std(-1, keepdim=True)
    return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
```


GELU

LN

Experiments - Training

Models	Dataset	Epochs	Base LR	LR decay	Weight decay	Dropout
ViT-B/{16,32}	JFT-300M	7	$8 \cdot 10^{-4}$	linear	0.1	0.0
ViT-L/32	JFT-300M	7	$6 \cdot 10^{-4}$	linear	0.1	0.0
ViT-L/16	JFT-300M	7/14	$4 \cdot 10^{-4}$	linear	0.1	0.0
ViT-H/14	JFT-300M	14	$3 \cdot 10^{-4}$	linear	0.1	0.0
$R50x\{1,2\}$	JFT-300M	7	10^{-3}	linear	0.1	0.0
R101x1	JFT-300M	7	$8 \cdot 10^{-4}$	linear	0.1	0.0
$R152x\{1,2\}$	JFT-300M	7	$6 \cdot 10^{-4}$	linear	0.1	0.0
R50+ViT-B/{16,32}	JFT-300M	7	$8\cdot 10^{-4}$	linear	0.1	0.0
R50+ViT-L/32	JFT-300M	7	$2 \cdot 10^{-4}$	linear	0.1	0.0
R50+ViT-L/16	JFT-300M	7/14	$4 \cdot 10^{-4}$	linear	0.1	0.0
ViT-B/{16,32}	ImageNet-21k	90	10^{-3}	linear	0.03	0.1
ViT-L/{16,32}	ImageNet-21k	30/90	10^{-3}	linear	0.03	0.1
ViT-*	ImageNet	300	$3 \cdot 10^{-3}$	cosine	0.3	0.1

Table 3: Hyperparameters for training. All models are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet we found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224.

Previous SOTA (2021.4)

Swin-Transformer V1 (vision) [MSRA, CVPR2021] segmentation classification classification detection ... 16× 8× $4\times$ (b) ViT (a) Swin Transformer (ours)

arxiv.org/abs/2103.14030

16×

16×

16×

Swin-Transformer V2: Swin Transformer V2: Scaling Up Capacity and Resolution (CVPR 2022)

TRANSFORMER BECOMES "SOTA"?

Not really. Let's see the truth!

2024/4/15 Chih-Chung Hsu@ACVlab

ImageNet-1K Classification Benchmark

ImageNet-1K Acc.

A ROADMAP

From ResNet to ConvNeXt

Training Techniques

- More epochs: 90 -> 300
- Optimizer: AdamW
- Data augmentation: Mixup, Cutmix, Random Augment, Random Erasing
- Regularizations: Stochastic Depth, Label Smoothing

ImageNet Top-1 acc: 76.1% -> 78.8%

Macro Design

Changing stage compute ratio / Changing stem to "Pachify"

	output size	• ResNet-50	 ConvNeXt-T 	• Swin-T		
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4		
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 96\\ 1 \times 1, 384\\ 1 \times 1, 96 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 96 \times 3\\ MSA, w7 \times 7, H=3, rel. pos.\\ 1 \times 1, 96 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 384\\ 1 \times 1, 96 \end{bmatrix}$		
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 192 \times 3 \\ MSA, w7 \times 7, H=6, rel. pos. \\ 1 \times 1, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 2$		
res4	14×14	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 384 \times 3 \\ MSA, w7 \times 7, H=12, rel. pos. \\ 1 \times 1, 384 \end{bmatrix} \times 6 \\ \begin{bmatrix} 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix}$		
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 768 \times 3 \\ MSA, w7 \times 7, H=24, rel. pos. \\ 1 \times 1, 768 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix}$		
FLOPs		4.1×10^{9}	4.5×10^9	4.5×10^{9}		
# params.		$25.6 imes 10^6$	28.6×10^6	$28.3 imes10^6$		

Table 9. Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.

ResNeXt-ify

Depth-wise Separable Convolution

(a) Conventional Convolutional Neural Network

Standard Convolution $FLOPs = H_2W_2(K^2C_1C_2)$

(b) Depthwise Separable Convolutional Neural Network

Depth-wise Separable Convolution

 $FLOPs = H_2 W_2 (K^2 C_1 + C_1 C_2)$

All calculation ignore bias add, batch normalization and activation function. The resulting FLOPs should be double if multiply accumulate (MAC) matters

Depth-wise Separable Convolution

	output size • ResNet-50		• ConvNeXt-T	• Swin-T		ResNet-50/200		78.8	GFLOPs	
	stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4		Macro	stage ratio	79.4	4.5
-					1×1,96×3		Design	- "patchify" stem	79.5	4.4
			[1×1, 64]	[d7×7, 96]	MSA, w7 \times 7, H=3, rel. pos.			depth conv	78.3 🗙	2.4
	res2	56×56	$3 \times 3, 64 \times 3$	$1 \times 1, 384 \times 3$	1×1,96	× 2	HesNext	width ↑	80.5	*5
			1×1,256	1×1, 96	[1×1, 384]		Inverted	inverting dims	80.6	4.6
_					1×1,96		Bottleneck	- move † d. eenu	70.0	and the second sec
					1×1, 192×3			- move 1 a. conv	79.9	4.1
			[1×1, 128]	[d7×7, 192]	MSA, w7 \times 7, H=6, rel. pos.			kernel sz. \rightarrow 5	80.4	X 4.1
	res3	28×28	$3\times3,128\times4$	1×1, 768 × 3	1×1, 192	imes 2	Large Kernel	kernel sz. \rightarrow 7	80.6	4.2
			[1×1, 512]	1×1, 192	1×1, 768			kernel sz. \rightarrow 9	30,6	*4.2
_					1×1, 192			kernel sz. → 11	///////////////////////////////////////	4.3
					1×1, 384×3			— Bel U→GELU	80.6	42
			1×1, 256	d7×7, 384	MSA, w7 \times 7, H=12, rel. pos.				00.0	
	res4	14×14	$3 \times 3,256 \times 6$	1×1, 1536 × 9	1×1, 384	$\times 6$	Micro	fewer activations		81.3 🗶 4.2
			[1×1, 1024]	1×1, 384	1×1, 1536		Design	fewer norms		81.4 🗙 4.2
_					1×1, 384			$BN\toLN$		81.5 📩 4.2
					1×1, 768×3		Con	sep. d.s. conv		82.0 ⊁ 4.5
			1×1, 512	d7×7, 768	MSA, w7 \times 7, H=24, rel. pos.		CON	VINEX[-1/D		
	res5	7×7	3×3, 512 × 3	$1 \times 1,3072 \times 3$	1×1, 768	imes 2		0 · TD		
			[1×1, 2048]	[1×1, 768]	1×1, 3072			Swin-1/B		81.3
_				0	1×1,768			Top1 Acc (%) 7	8 80	82
_]	FLOPs	4.1×10^{9}	4.5×10^{9}	4.5×10^{9}					
	# params.		25.6×10^{6}	28.6×10^{6}	28.3×10^{6}					

Table 9. Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.

Inverted Bottleneck / Large Kernel Size

RESNET Block

Inverted Bottleneck / Large Kernel Size

	output size	• ResNet-50	 ConvNeXt-T 	• Swin-T	GFLOPs
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4	Macro stage ratio 79.4
				$1 \times 1,96 \times 3$	Design _ "patchify" stem 79.5
res2	56×56	$3 \times 3, 64 \times 3$	$\begin{vmatrix} 1 \times 7, 96 \\ 1 \times 1, 384 \end{vmatrix} \times 3$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ResNeXt width 1 80.5
		[1×1, 256]	[1×1, 96]		Inverted inverting dims 80.6 4.6
				$\begin{bmatrix} 1 \times 1, 96 \\ 1 \times 1, 192 \times 3 \end{bmatrix}$	move † d. conv 79.9 ¥4.1
		[1×1, 128]	[d7×7, 192]	MSA, $w7 \times 7$, H=6, rel. pos.	kernel sz. → 5 80.4 💥 4.1
res3	28×28	$3 \times 3, 128 \times 4$	$1 \times 1,768 \times 3$	1×1, 192 × 2	Large Kernel sz. → 7 80.6 4.2
		[1×1, 512]	[1×1, 192]	1×1,768	kernel sz. → 9
					kernel sz. → 11
		[1×1, 256]	[d7×7. 384]	MSA. $w7 \times 7$. H=12, rel. pos.	ReLU→GELU 80.6 ¥4.2
res4	14×14	3×3, 256 × 6	1×1, 1536 × 9	$1 \times 1,384$ $\times 6$	Micro fewer activations 81.3 4.2
		[1×1, 1024]	1×1, 384	[1×1, 1536]	Design fewer norms 81.4 × 4.2
					BN → LN 81.5 24.2
		[1×1 512]	[d7×7_768]	1×1 , 708×3 MSA w7×7 H=24 rel pos	ConvNeXt-T/B 82.0 ¥4.5
res5	7×7	$3 \times 3, 512 \times 3$	$1 \times 1,3072 \times 3$	$1 \times 1,768 \times 2$	•••
		1×1, 2048	1×1, 768	[1×1, 3072]	Swin-T/B 81.3 × 4.5
				1×1,768	Top1 Acc (%) 78 80 82
]	FLOPs	4.1×10^{9}	4.5×10^{9}	4.5×10^9	
#	params.	25.6×10^{6}	28.6×10^{6}	$28.3 imes10^6$	

Table 9. Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.

Micro Design

- RELU -> GELU
- Fewer activation
- Fewer norms
- Batch Norm -> Layer Norm
- Separate downsampling conv
- ImageNet Top-1 acc: 82.0%

Layer Normalization

6.7 Convolutional Networks

We have also experimented with convolutional neural networks. In our preliminary experiments, we observed that layer normalization offers a speedup over the baseline model without normalization, but batch normalization outperforms the other methods. With fully connected layers, all the hidden units in a layer tend to make similar contributions to the final prediction and recentering and re-scaling the summed inputs to a layer works well. However, the assumption of similar contributions is no longer true for convolutional neural networks. The large number of the hidden units whose receptive fields lie near the boundary of the image are rarely turned on and thus have very different statistics from the rest of the hidden units within the same layer. We think further research is needed to make layer normalization work well in ConvNets

https://arxiv.org/abs/1607.06450
Different ConvNeXt variants

ConvNeXt-T	Channels(C)	Dlooks (D)
ConvNeXt-S	Channels (C)	BIOCKS (B)
■ ConvNeXt-B	(96, 192, 384, 768)	(3, 3, 9, 3)
ConvNeXt-LConvNeXt-XL	(96, 192, 384, 768)	(3, 3, 27, 3)
	(128, 256, 512, 1024)	(3, 3, 27, 3)
	(192, 384, 768, 1536)	(3, 3, 27, 3)
	(256, 512, 1024, 2048)	(3, 3, 27, 3)

Doculto	model	image	#norom		throughput	IN-1K	
Results	model	size	#param.	FLOFS	(image / s)	top-1 acc.	
		ImageN	Net-1K trair	ned models			
	• RegNetY-16G [54]	224^{2}	84M	16.0G	334.7	82.9	
	• EffNet-B7 [71]	600^{2}	66M	37.0G	55.1	84.3	
	• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	85.7	
	• DeiT-S [73]	224^{2}	22M	4.6G	978.5	79.8	
	• DeiT-B [73]	224^{2}	87M	17.6G	302.1	81.8	
	• Swin-T	224^{2}	28M	4.5G	757.9	81.3	
	 ConvNeXt-T 	224^{2}	29M	4.5G	774.7	82.1	
	• Swin-S	224^{2}	50M	8.7G	436.7	83.0	
	• ConvNeXt-S	224^{2}	50M	8.7G	447.1	83.1	
	• Swin-B	224^{2}	88M	15.4G	286.6	83.5	
	• ConvNeXt-B	224^{2}	89M	15.4G	292.1	83.8	
ſ	• Swin-B	384^{2}	88M	47.1G	85.1	84.5	7
l	 ConvNeXt-B 	384^{2}	89M	45.0G	95.7	85.1	
	 ConvNeXt-L 	224^{2}	198M	34.4G	146.8	84.3	
	 ConvNeXt-L 	384^{2}	198M	101.0G	50.4	85.5	

Dooulto	model	image	#param		throughput	IN-1K	
Results	mouer	size	#param.	TLOFS	(image / s)	top-1 acc.	
		ImageN	Net-1K train	ned models	3		
	• RegNetY-16G [54]	224^{2}	84M	16.0G	334.7	82.9	
	• EffNet-B7 [71]	600^{2}	66M	37.0G	55.1	84.3	
	• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	85.7	
	• DeiT-S [73]	224^{2}	22M	4.6G	978.5	79.8	
	• DeiT-B [73]	224^{2}	87M	17.6G	302.1	81.8	
	• Swin-T	224^{2}	28M	4.5G	757.9	81.3	٦
	 ConvNeXt-T 	224^{2}	29M	4.5G	774.7	82.1	
	 Swin-S 	224^{2}	50M	8.7G	436.7	83.0	7
	 ConvNeXt-S 	224^{2}	50M	8.7G	447.1	83.1	
	 Swin-B 	224^{2}	88M	15.4G	286.6	83.5	7
	 ConvNeXt-B 	224^{2}	89M	15.4G	292.1	83.8	
	 Swin-B 	384 ²	88M	47.1G	85.1	84.5	7
	 ConvNeXt-B 	384^{2}	89M	45.0G	95.7	85.1	
	 ConvNeXt-L 	224^{2}	198M	34.4G	146.8	84.3	
	 ConvNeXt-L 	384^{2}	198M	101.0G	50.4	85.5	

Doculto	model	image	#param		throughput	IN-1K	
Results	model	size	#param.	FLOFS	(image / s)	top-1 acc.	
		ImageN	let-1K trair	ned models			
	• RegNetY-16G [54]	224^{2}	84M	16.0G	334.7	82.9	
	• EffNet-B7 [71]	600^{2}	66M	37.0G	55.1	84.3	
	• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	85.7	
	• DeiT-S [73]	224^{2}	22M	4.6G	978.5	79.8	
	• DeiT-B [73]	224^{2}	87M	17.6G	302.1	81.8	
	• Swin-T	224^{2}	28M	4.5G	757.9	81.3	
	 ConvNeXt-T 	224^{2}	29M	4.5G	774.7	82.1	
	• Swin-S	224^{2}	50M	8.7G	436.7	83.0	
	• ConvNeXt-S	224^{2}	50M	8.7G	447.1	83.1	
	• Swin-B	224^{2}	88M	15.4G	286.6	83.5	
	• ConvNeXt-B	224^{2}	89M	15.4G	292.1	83.8	
	• Swin-B	384^{2}	88M	47.1G	85.1	84.5	_
	• ConvNeXt-B	384^{2}	89M	45.0G	95.7	85.1]
	 ConvNeXt-L 	224^{2}	198M	34.4G	146.8	84.3	
	 ConvNeXt-L 	384^{2}	198M	101.0G	50.4	85.5	

	Ir	nageNet-	22K pre-ti	rained mode	ls	
Results	• R-101x3 [39]	384^{2}	388M	204.6G	-	84.4
	• R-152x4 [39]	480^{2}	937M	840.5G	-	85.4
	• EffNetV2-L [72]	480^{2}	120M	53.0G	83.7	86.8
	• EffNetV2-XL [72]	480^{2}	208M	94.0G	56.5	87.3
	• ViT-B/16 (☎) [67]	384^{2}	87M	55.5G	93.1	85.4
	• ViT-L/16 (☎) [67]	384^{2}	305M	191.1G	28.5	86.8
	• ConvNeXt-T	224^{2}	29M	4.5G	774.7	82.9
	 ConvNeXt-T 	384^{2}	29M	13.1G	282.8	84.1
	 ConvNeXt-S 	224^{2}	50M	8.7G	447.1	84.6
	 ConvNeXt-S 	384^{2}	50M	25.5G	163.5	85.8
	• Swin-B	224^{2}	88M	15.4G	286.6	85.2
	 ConvNeXt-B 	224^{2}	89M	15.4G	292.1	85.8
	• Swin-B	384^{2}	88M	47.0G	85.1	86.4
	 ConvNeXt-B 	384^{2}	89M	45.1G	95.7	86.8
	• Swin-L	224^{2}	197M	34.5G	145.0	86.3
	 ConvNeXt-L 	224^{2}	198M	34.4G	146.8	86.6
	• Swin-L	384^{2}	197M	103.9G	46.0	87.3
	 ConvNeXt-L 	384^{2}	198M	101.0G	50.4	87.5
	 ConvNeXt-XL 	224^{2}	350M	60.9G	89.3	87.0
	 ConvNeXt-XL 	384^{2}	350M	179.0G	30.2	87.8

model	#naram	FI OPs	throughput training		IN-1K
model	πparam.	TLOI 5	(image / s)	mem. (GB)	acc.
• ViT-S	22M	4.6G	978.5	4.9	79.8
• ConvNeXt-S (iso.)	22M	4.3G	1038.7	4.2	79.7
○ ViT-B	87M	17.6G	302.1	9.1	81.8
• ConvNeXt-B (iso.)	87M	16.9G	320.1	7.7	82.0
∘ ViT-L	304M	61.6G	93.1	22.5	82.6
• ConvNeXt-L (iso.)	306M	59.7G	94.4	20.4	82.6

TRANSFORMER IS BACK...AGAIN

Masked Autoencoders Are Scalable Vision Learners Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick Facebook Al Research (FAIR)

In a nutshell...

Masked Autoencoder (MAE)

- MAE are scalable self-supervised learners for computer vision
- Mask random patches of the input image and reconstruct the missing pixels
- Asymmetric Encoder-Decoder Architecture
 - Visible subset of patches (without mask tokens) → Encoder
 - Latent representation & Mask tokens → Decoder (lightweight)
- Masking high proportion of the input image, e.g., 75%, yields a non-trivial and meaningful self-supervisory task
- Accelerate training (by 3× or more) and improves accuracy
- Learning high-capacity models that generalizes well
 - Vanilla ViT-H [] achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data
- Transfer performance in downstream tasks outperforms supervised pre- training and shows promising scaling behavior

Background

Masked Language Modeling

- Success of self-supervised pre-training in NLP
 - Masked language modeling (e.g., BERT [])
 - Autoregressive language modeling (e.g., GPT [])
- Method: remove a portion of the input sequence and learn to predict the missing content
- These methods have been shown to scale excellently
- These pre-trained representations generalize well to various downstream tasks

Background

Autoencoder

- Encoder maps an input to a latent representation
- Decoder reconstructs the input
- E.g., PCA and k-means are autoencoders
- Denoising autoencoders (DAE) [1] are a class of autoencoders that corrupt an input signal and learn to reconstruct the original, uncorrupted signal
- A series of methods can be thought of as a generalized DAE under different corruptions, e.g., masking pixels or removing color channels

Masked Image Encoding

- DAE [1] presents masking as a noise type
- Convolution-based
 - Context Encoder inpaints large missing regions
- Transformer-based
 - **iGPT** operates on sequences of pixels and predicts unknown pixels
 - The ViT studies masked patch prediction for self-supervised learning
 - Most recently, BEiT proposes to predict discrete tokens

Background

Self-supervised Learning

- Early self-supervised learning approaches often focused on different pretext tasks for pre-training
- Contrastive learning has been popular, which models image similarity and dissimilarity between two or more views
- Contrastive and related methods strongly depend on data augmentation
- Autoencoding pursues a conceptually different direction, and it exhibits different behaviors

What makes masked autoencoding different between vision and language?

Architectural Gap

- Convolutions typically operate on regular grids
- It is not straightforward to integrate 'indicators' such as mask tokens or positional embeddings into convolutional networks
- Solution: ViT [1]

Information Density

- Language: human-generated signals, highly semantic, information-dense, Need sophisticated language understanding to train a model to predict only a few missing words per sentence
- Images: natural signals, heavy spatial redundancy, A missing patch can be recovered from neighboring patches with little high-level understanding of parts, objects, and scenes
- Solution: masking a very high portion of random patches
- This strategy largely reduces redundancy and creates a challenging self-supervisory task that requires holistic understanding beyond low-level image statistics

The Role of Autoencoder's Decoder

- Language: decoder predicts missing words that contain rich semantic information
- Image: decoder reconstructs pixels, hence its output is of a lower semantic level than common recognition tasks
- Decoder design plays a key role in determining the semantic level of the learned latent representations for images

Masked Autoencoder (MAE)

MAE architecture

Figure 1. **Our MAE architecture**. During pre-training, a large random subset of image patches (*e.g.*, 75%) is masked out. The encoder is applied to the small subset of *visible patches*. Mask tokens are introduced *after* the encoder, and the full set of encoded patches and mask tokens is processed by a small decoder that reconstructs the original image in pixels. After pre-training, the decoder is discarded and the encoder is applied to uncorrupted images to produce representations for recognition tasks.

Masked Autoencoder (MAE)

MAE: A Simple, Effective, and Scalable Self-supervised Learner

- MAE masks random patches from the input image and reconstructs the missing patches in the pixel space
- Asymmetric encoder-decoder design
 - Encoder operates only on the visible subset of patches (without mask tokens)
 - (Lightweight) Decoder reconstructs the input from the latent representation along with mask tokens
 - Shifting the mask tokens to the small decoder results in a large reduction in computation
- A very high masking ratio (e.g., 75%) can achieve a win-win scenario
 - It optimizes accuracy while allowing the encoder to process only a small portion (e.g., 25%) of patches
 - This can reduce overall pre-training time by 3 × or more and likewise reduce memory consumption, enabling us to scale our MAE to large models easily
- With MAE pre-training,
 - Vanilla ViT-H achieves 87.8% accuracy when fine-tuned on ImageNet-1K
 - Transfer Learning on object detection, instance segmentation, semantic segmentation achieve better results than its supervised pre-training counterparts
 - Significant gains by scaling up models

MAE Reconstruction

ImageNet validation images

- Masking ratio 80%
- No loss is computed on visible patches (i.e., Loss is only computed on masked patches)

Figure 2. Example results on ImageNet *validation* images. For each triplet, we show the masked image (left), our MAE reconstruction[†] (middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix. [†]As no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method's behavior.

MAE Reconstruction

COCO validation images

MAE trained on ImageNet

Figure 3. Example results on COCO validation images, using an MAE trained on ImageNet (the same model weights as in Figure 2). Observe the reconstructions on the two right-most examples, which, although different from the ground truth, are semantically plausible.

MAE Reconstruction

- ImageNet validation images
 - MAE pre-trained with a masking ratio 75%
 - Applied on inputs with higher masking ratios (75%, 85%, 95%)

Figure 4. Reconstructions of ImageNet *validation* images using an MAE pre-trained with a masking ratio of 75% but applied on inputs with higher masking ratios. The predictions differ plausibly from the original images, showing that the method can generalize.

Masked Autoencoder (MAE)

Masking

- Image is divided into regular non-overlapping patches
- Sample a subset of patches and mask (i.e., remove) the remaining ones
- High masking ratio (e.g., 75%)
- MAE encoder
 - Encoder is a ViT [] but applied only on visible, unmasked patches
 - Encoder only operates on a small subset (e.g., 25%) of the full set
 - Masked patches are removed; No mask tokens are used
 - This allows us to train very large encoders with only a fraction of compute and memory

MAE decoder

- The input to the MAE decoder is the full set of tokens consisting of encoded visible patches and mask tokens
- Positional embeddings are added to all tokens in this full set
- MAE decoder is only used during pre-training to perform the image reconstruction task (only the encoder is used to produce image representations for recognition)
- Decoder has <10% computation per token vs. the encoder

Masked Autoencoder (MAE)

Reconstruction Target

- MAE reconstructs the input by predicting the pixel values for each masked patch
- ✓ Loss function computes the MSE between reconstructed and original images in the pixel space
- ✓ Loss is only computed on masked patches, similar to BERT []
- masks random patches from the input image and reconstructs the missing patches in the pixel space

Simple Implementation

- 1. Generate a token for every input patch
- 2. Randomly shuffle the list of tokens and remove the last portion of the list
- 3. After encoding, mask tokens are appended to the list of encoded patches, and unshuffle the full list (inverting the random shuffle operation)
- 4. The decoder is applied to this full list (with positional embeddings added)

ImageNet Experiments

- Experimental Settings
 - Self-supervised pre-training on the ImageNet-1K training set →
 - supervised training to evaluate the representation with
 - End-to-end fine-tuning
 - Linear probing (freeze backbone and only train linear layer)
- ViT-L trained from scratch vs. fine-tuned from MAE
 - Backbone: ViT-L/16
 - Scratch: 200 epochs vs. Fine-tuning: 50 epochs

scratch, original [16]	scratch, our impl.	baseline MAE
76.5	82.5	84.9

✓ Fine-tuning accuracy heavily depends on pre-training

ImageNet Experiments

Masking ratio

✓ BERT typical masking ratio: 15%

Figure 5. Masking ratio. A high masking ratio (75%) works well for both fine-tuning (top) and linear probing (bottom). The y-axes are ImageNet-1K validation accuracy (%) in all plots in this paper.

ImageNet Experiments: Ablations

blocks	ft	lin
1	84.8	65.5
2	84.9	70.0
4	84.9	71.9
8	84.9	73.5
12	84.4	73.3

(a) **Decoder depth**. A deep decoder can improve linear probing accuracy.

case	ft	lin
pixel (w/o norm)	84.9	73.5
pixel (w/ norm)	85.4	73.9
PCA	84.6	72.3
dVAE token	85,3	71.6

(d) **Reconstruction target**. Pixels as reconstruction targets are effective.

dim	ft	lin
128	84.9	69.1
256	84.8	71.3
512	84.9	73.5
768	84.4	73.1
1024	84.3	73.1

(b) **Decoder width**. The decoder can be narrower than the encoder (1024-d).

case	ft	lin
none	84.0	65.7
crop, fixed size	84.7	73.1
crop, rand size	84.9	73.5
crop + color jit	84.3	71.9

(e) Data augmentation. Our MAE works with minimal or no augmentation.

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	$1 \times$

(c) Mask token. An encoder without mask tokens is more accurate and faster (Table 2).

case	ratio	ft	lin	
random	75	84.9	73.5	
block	50	83.9	72.3	
block	75	82.8	63.9	
grid	75	84.0	66.0	

(f) Mask sampling. Random sampling works the best. See Figure 6 for visualizations.

Table 1. **MAE ablation experiments** with ViT-L/16 on ImageNet-1K. We report fine-tuning (ft) and linear probing (lin) accuracy (%). If not specified, the default is: the decoder has depth 8 and width 512, the reconstruction target is unnormalized pixels, the data augmentation is random resized cropping, the masking ratio is 75%, and the pre-training length is 800 epochs. Default settings are marked in gray.

ImageNet Experiments: Wall-clock time (w/wo mask)

encoder	dec. depth	ft acc	hours	speedup
ViT-L, w/ [M]	8	84.2	42.4	2
ViT-L	8	84.9	15.4	$2.8 \times$
ViT-L	1	84.8	11.6	3.7 ×
ViT-H, w/ [M]	8	142	119.6†	12
ViT-H	8	85.8	34.5	$3.5 \times$
ViT-H	1	85.9	29.3	$4.1 \times$

Table 2. **Wall-clock time** of our MAE training (800 epochs), benchmarked in 128 TPU-v3 cores with TensorFlow. The speedup is relative to the entry whose encoder has mask tokens (gray). The decoder width is 512, and the mask ratio is 75%. [†]: This entry is estimated by training ten epochs.

ImageNet Experiments: Mask sampling strategies

Figure 6. **Mask sampling strategies** determine the pretext task difficulty, influencing reconstruction quality and representations (Table 1f). Here each output is from an MAE trained with the specified masking strategy. Left: random sampling (our default). Middle: block-wise sampling [2] that removes large random blocks. Right: grid-wise sampling that keeps one of every four patches. Images are from the validation set.

ImageNet Experiments

Training Schedules

- ✓ Not observed saturation of linear probing accuracy even at 1600 epochs
- ✓ MoCo v3 saturates at 300 epochs for ViT-L

Figure 7. **Training schedules**. A longer training schedule gives a noticeable improvement. Here each point is a full training schedule. The model is ViT-L with the default setting in Table 1.

Comparisons with self-supervised methods

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	-	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	-		-
MoCo v3 [9]	IN1K	83.2	84.1	2	-
BEiT [2]	IN1K+DALLE	83.2	85.2	<u> </u>	121
MAE	IN1K	83.6	85.9	86.9	87.8

Table 3. Comparisons with previous results on ImageNet-1K. The pre-training data is the ImageNet-1K training set (except the tokenizer in BEiT was pre-trained on 250M DALLE data [43]). All self-supervised methods are evaluated by end-to-end fine-tuning. The ViT models are B/16, L/16, H/14 [16]. The best for each column is underlined. All results are on an image size of 224, except for ViT-H with an extra result on 448. Here our MAE reconstructs normalized pixels and is pre-trained for 1600 epochs.

Comparisons with Previous Results

Comparisons with supervised pre-training

Figure 8. MAE pre-training vs. supervised pre-training, evaluated by fine-tuning in ImageNet-1K (224 size). We compare with the original ViT results [16] trained in IN1K or JFT300M.

Partial Fine-tuning

MAE vs. MoCo v3 (w.r.t. # fine-tuned transformer blocks)

Figure 9. **Partial fine-tuning** results of ViT-L w.r.t. the number of fine-tuned Transformer blocks under the default settings from Table 1. Tuning 0 blocks is linear probing; 24 is full fine-tuning. Our MAE representations are less linearly separable, but are consistently better than MoCo v3 if one or more blocks are tuned.

Transfer Learning Experiments

Object Detection and Segmentation

		AP	box	AP ^{mask}	
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9
MoCo v3	IN1K	47.9	49.3	42.7	44.0
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1
MAE	IN1K	50.3	53.3	44.9	47.2

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline. All entries are based on our implementation. Self-supervised entries use IN1K data *without* labels. Mask AP follows a similar trend as box AP.

Transfer Learning Experiments

Semantic Segmentation

method	pre-train data	ViT-B	ViT-L
supervised	IN1K w/ labels	47.4	49.9
MoCo v3	IN1K	47.3	49.1
BEiT	IN1K+DALLE	47.1	53.3
MAE	IN1K	48.1	53.6

Table 5. **ADE20K semantic segmentation** (mIoU) using Uper-Net. BEiT results are reproduced using the official code. Other entries are based on our implementation. Self-supervised entries use IN1K data *without* labels.

Transfer Learning Experiments

Pixels vs. Tokens

		IN1K		CO	CO	ADE20K	
	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-B	ViT-L
pixel (w/o norm)	83.3	85.1	86.2	49.5	52.8	48.0	51.8
pixel (w/ norm)	83.6	85.9	86.9	50.3	53.3	48.1	53.6
dVAE token	83.6	85.7	86.9	50.3	53.2	48.1	53.4
\bigtriangleup	0.0	-0.2	0.0	0.0	-0.1	0.0	-0.2

Table 6. **Pixels vs. tokens** as the MAE reconstruction target. \triangle is the difference between using dVAE tokens and using normalized pixels. The difference is statistically insignificant.

HOW ABOUT CNN?

ConvNext v2 is back...again

ConvNextV2

Backbone	Method	FLOPS	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	AP ^{mask}	AP_{50}^{mask}	AP_{75}^{mask}
ConvNeXt V1-B	Supervised	486G	50.3	71.6	56.1	44.9	68.5	48.8
ConvNeXt V2-B	Supervised	486G	51.0	72.4	56.6	45.6	69.5	49.7
Swin-B	SimMIM	497G	52.3	_	_	_	_	_
ConvNeXt V2-B	FCMAE	486G	52.9	72.6	58.9	46.6	70.0	51.1
ConvNeXt V1-L	Supervised	875G	50.6	71.5	56.3	45.1	68.7	49.2
ConvNeXt V2-L	Supervised	875G	51.5	72.5	57.3	45.8	69.4	49.9
Swin-L	SimMIM	904G	53.8	_	_	_	_	_
ConvNeXt V2-L	FCMAE	875G	54.4	73.9	60.4	47.7	71.4	52.3
Swin V2-H	SimMIM	_	54.4	_	_	_	_	_
ConvNeXt V2-H	FCMAE	2525G	55.7	75.2	61.8	48.9	72.8	53.6

+1.5% 86.0 +1.1% 659M Accuracy (%) 84.0 +0.9% 198M +1.1% 89M 82.0 +0.8% 28M ImageNet Top-1 80.0 15.6M +1.0% 9.1M 78.0 +1.0% 5.2M 76.0 ConvNeXt V1 Sup ConvNeXt V2 Self-Sup 3.7M ConvNeXt V1 Self-Sup 74.0 Atto Femto Pico Nano Tiny Base Large Huge

Table 6. **COCO object detection and instance segmentation results** using Mask-RCNN. FLOPS are calculated with image size (1280, 800). Swins' results are from [77]. All COCO fine-tuning experiments rely on ImageNet-1K pre-trained models. Figure 1. **ConvNeXt V2 model scaling**. The ConvNeXt V2 model, which has been pre-trained using our fully convolutional masked autoencoder framework, performs significantly better than the previous version across a wide range of model sizes.

arxiv.org/pdf/2301.00808v1.pdf

ConvNextV2

Combine with mask auto-encoder

ConvNextV2

ConvNeXt V1 Block ConvNeXt V2 Block 96-d 96-d d7x7, 96 d7x7,96 LN LN 1x1, 384 1x1, 384 GELU GELU +GRN 1x1,96 1x1,96 -LayerScale

Figure 5. **ConvNeXt Block Designs**. In ConvNeXt V2, we add the GRN layer after the dimension-expansion MLP layer and drop LayerScale [65] as it becomes redundant.

GRN of ConvNextV2

Figure 3. Feature activation visualization. We visualize the activation map for each feature channel in small squares. For clarity, we display 64 channels in each visualization. The ConvNeXt V1 model suffers from a feature collapse issue, which is characterized by the presence of redundant activations (dead or saturated neurons) across channels. To fix this problem, we introduce a new method to promote feature diversity during training: the global response normalization (GRN) layer. This technique is applied to high-dimensional features in every block, leading to the development of the ConvNeXt V2 architecture.
SO WHAT NOW?

New direction: masking learning and mode at scale

EVA (v1) Exploring the limits of masked visual representation learning at scale (CVPR23)

Figure 1. An illustration of this work. We find with sufficient image data (30M) and compute (150 epochs), simply regressing the masked out image-text aligned vision features (*i.e.*, CLIP features) scales up well (to 1.0B parameters) and transfers well to various downstream tasks.

Toward Knowledge Distillation

- KD is a good way
 - But not the only way
- EVA: Large-scale visual pre-training model, contrastive learning
- No tokenization & feature distillation longer contrastive learning
- Strong transferability & generalization on downstream tasks
- Large-scale training & model scaling key, complex mechanisms unnecessary
- Focus on algorithm essence, not technical details

So what's different?

- EVA: large-scale visual pre-training, contrastive learning
- Teacher: CLIP, student: 1B-parameter ViT
- Cosine similarity loss, 40% input patch masked
- Introduces MIM idea, larger student model, cosine similarity loss
- Strong transferability & generalization, essence over technical details

model	#param.	extra labeled data	image size	top-1 acc.
using private labeled data				
SwinV2-G [64]	3.0B	IN-21K-ext-70M	640 ²	90.2
ViT-G [123]	1.8B	JFT-3B	518^{2}	90.5
ViT-g (CoCa) [120]	1.0B	JFT-3B+ALIGN	576^{2}	91.0
using <i>public</i> labeled data				
CoAtNet-4 [29]	275M	IN-21K (14M)	512 ²	88.6
MaxViT-XL [100]	475M	IN-21K (14M)	512 ²	88.7
MViTv2-H [60]	667M	IN-21K (14M)	512 ²	88.8
FD-CLIP-L [110]	304M	IN-21K (14M)	336 ²	89.0
BEiT-3 [104]	2.0B	35M img-txt pairs	336 ²	89.6
EVA	1.0B	IN-21K (14M)	336 ²	89.6
EVA	1.0B	IN-21K (14M)	560^{2}	89.7

 Table 4. Comparisons of image classification performance on

 ImageNet-1K validation set. With only publicly available data,

EVA02 – Upgraded!!

- EVA-02: upgraded version of EVA-01, overall framework similar
- ViT architecture optimized: norm, initialization, FFN, positional encoding
- Teacher model: EVA-01 instead of CLIP, progressive training paradigm
- Training data: 40M images, up from 30M, enriched visual patterns
- Parameters: 3B, down from 10B, yet performance improved, parameter efficiency optimized
- Five model sizes available, catering to different application needs

Figure 1: Qualitative comparisons between **EVA-02** (#params: 304M) and **EVA** (#params: 1011M) [44] pre-trained representations. **EVA-02** with only 304M pre-trained representations pulls off a "giant-killing" act against the previous state-of-the-art **EVA**.

Summary: CNN Architectures

- Many popular architectures available in model zoos
- ResNet and SENet currently good defaults to use
- Networks have gotten increasingly deep over time
- Many other aspects of network architectures are also continuously being investigated and improved
- Even more recent trend towards meta-learning/Few-shot learning
- Next time: Object detection via deep learning