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SOTA CONVOLUTIONAL 
NEURAL NETWORK



Last 2 lectures: Training neural networks

One time setup
 activation functions, preprocessing, weight initialization,  regularization, gradient checking

 Training dynamics
 babysitting the learning process,
 parameter updates, hyperparameter optimization

 Evaluation
 model ensembles, test-time augmentation
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“You need a lot of a data if you want to  
train/use CNNs”

One more thing: Transfer Learning
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Transfer Learning with CNNs
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1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation  
Feature for Generic Visual Recognition”, ICML 2014  
Razavian et al, “CNN Features Off-the-Shelf: An  
Astounding Baseline for Recognition”, CVPR Workshops  
2014
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2. Small Dataset (C classes)

Freeze these

Reinitialize  
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation  
Feature for Generic Visual Recognition”, ICML 2014  
Razavian et al, “CNN Features Off-the-Shelf: An  
Astounding Baseline for Recognition”, CVPR Workshops  
2014

Transfer Learning with CNNs
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Train these

With bigger  
dataset, train  
more layers

Freeze these

Lower learning rate  
when finetuning;  
1/10 of original LR  
is good starting  
point

Donahue et al, “DeCAF: A Deep Convolutional Activation  
Feature for Generic Visual Recognition”, ICML 2014  
Razavian et al, “CNN Features Off-the-Shelf: An  
Astounding Baseline for Recognition”, CVPR Workshops  
2014

3. Bigger dataset

Transfer Learning with CNNs

2024/4/15 Chih-Chung Hsu@ACVlab 7

FC-C
FC-4096
FC-4096



Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic
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MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar  
dataset

very different  
dataset

very little data

Use Linear  
Classifier 
on  top 
layer

You’re in  
trouble… Try  
linear 
classifier  
from different  
stages

quite a lot of  
data

Finetune 
a  few 
layers

Finetune a  
larger 
number  of 
layers
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Transfer learning with CNNs is pervasive…
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Image Captioning: CNN + RNN

(it’s the norm, not an exception)
Object Detection

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for  
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educationalpurposes.

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced withpermission.

(Fast R-CNN)



Transfer learning with CNNs is pervasive…

2024/4/15 Chih-Chung Hsu@ACVlab 12

Image Captioning: CNN + RNNCNN pretrained  
on ImageNet

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for  
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educationalpurposes.

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced withpermission.

(it’s the norm, not an exception)
Object Detection
(Fast R-CNN)



Transfer learning with CNNs is pervasive…
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Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced withpermission.

CNN pretrained  
on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for  

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educationalpurposes.

(it’s the norm, not an exception)
Object Detection
(Fast R-CNN)



Transfer learning with CNNs is pervasive…
But recent results show it might not always be necessary!
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He et al, “Rethinking ImageNet Pre-training”, arXiv 2018



Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

 Find a very large dataset that has  similar data, train a big ConvNet there

 Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of  pretrained models so you don’t 
need to train your own

 TensorFlow: https://github.com/tensorflow/models 

 PyTorch: https://github.com/pytorch/vision
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https://github.com/tensorflow/models
https://github.com/pytorch/vision


Today: CNN Architectures

Case Studies
 AlexNet
 VGG
 GoogLeNet
 ResNet

 Also....
 SENet
 NiN (Network in Network)
 Wide ResNet
 ResNeXT
 DenseNet
 FractalNet
 MobileNets
 NASNet
 SK/EfficientNet/ViT,…never stop
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Review: LeNet-5
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[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Architecture:
CONV1  
MAX POOL1  
NORM1  
CONV2  
MAX POOL2  
NORM2  
CONV3  
CONV4  
CONV5
Max POOL3  
FC6
FC7  
FC8



Case Study: AlexNet
[Krizhevsky et al. 2012]

Convolution:
 Input feature maps: C∗H∗W  N-channeled output feature maps
 #parameters: N * C * K * K

Group convolution:
 #parameters: N * (C/G) * K * K (G=#groups) 
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Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55



Input: 227x227x3 images

Q: Why 227*227? Not 256*256?

21

Review: AlexNet
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Data augmentation: Randomly cropping!!
Assumed that the input size = 256*256
We randomly crop the image sized of 227*227

256

256

227

227

227

227

227

227

227

227

227

227



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images

First layer (CONV1): 96 11x11 
filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of 
parameters in this layer?



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images

First layer (CONV1): 96 11x11 
filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K



Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 24

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images  
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2 

Q: what is the output volume size? Hint: (55-3)/2+1 = 27



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images  
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2  
Output volume: 27x27x96

Q: what is the number of parameters in this layer?



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3
images  After 
CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at 
stride 2  Output volume: 27x27x96
Parameters: 0!



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images  
After CONV1: 55x55x96  
After POOL1: 27x27x96
...



Case Study: AlexNet
[Krizhevsky et al. 2012]
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[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Full (simplified) AlexNet architecture:  
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  
[6x6x256] MAX POOL3: 3x3 filters at stride 2



Case Study: AlexNet
[Krizhevsky et al. 2012]
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[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Full (simplified) AlexNet architecture:  
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  
[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:
-first use of ReLU
-used Norm layers (not common anymore)
-heavy data augmentation
-dropout 0.5
-batch size 128
-SGD Momentum 0.9
-Learning rate 1e-2, reduced by 10  
manually when val accuracy plateaus
- L2 weight decay 5e-4



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Full (simplified) AlexNet architecture:  
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

Historical note: Trained on GTX 580
GPU with only 3 GB of memory.
Network spread across 2 GPUs, half
the neurons (feature maps) on each
GPU.

[6x6x256] MAX POOL3: 3x3 filters at stride 2  
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[55x55x48] x 2



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Full (simplified) AlexNet architecture:  
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

CONV1, CONV2, CONV4, CONV5:
Connections only with feature maps  
on same GPU

[6x6x256] MAX POOL3: 3x3 filters at stride 2  
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



Case Study: AlexNet
[Krizhevsky et al. 2012]
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Full (simplified) AlexNet architecture:  
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8:
Connections with all feature maps in  
preceding layer, communication  
across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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Lin et al Sanchez& Krizhevsky et al Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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Lin et al Sanchez&  
Perronnin

Krizhevsky et al  
(AlexNet)

Zeiler&  
Fergus

Simonyan & Szegedy et al  
Zisserman (VGG) (GoogLeNet)

He et al  
(ResNet)

Russakovsky et alShao et al Hu et al  
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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Lin et al Sanchez&  
Perronnin

Krizhevsky et al  
(AlexNet)

Zeiler&  
Fergus

Simonyan & Szegedy et al  
Zisserman (VGG) (GoogLeNet)

He et al  
(ResNet)

Russakovsky et alShao et al Hu et al  
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
ZFNet: Improved  
hyperparameters over  
AlexNet



ZFNet
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[Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)  
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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Lin et al Sanchez&  
Perronnin

Krizhevsky et al Zeiler&  
(AlexNet) Fergus

Simonyan & Szegedy et al  
Zisserman (VGG) (GoogLeNet)

He et al  
(ResNet)

Russakovsky et alShao et al Hu et al  
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks



VGGNet
[Simonyan and Zisserman, 2014]
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Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1  
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13  (ZFNet)
-> 7.3% top 5 error in ILSVRC’14
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VGGNet
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Q: Why use smaller filters? (3x3 conv) Softmax
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VGGNet

2024/4/15 Chih-Chung Hsu@ACVlab 40

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers  
has same effective receptive field as  one 
7x7 conv layer

Q: What is the effective receptive field of  
three 3x3 conv (stride 1) layers?
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VGGNet
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Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers  has 
same effective receptive field as  one 7x7 
conv layer

[7x7]
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Input

AlexNet VGG16 VGG19



VGGNet
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Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers  
has same effective receptive field as  one 
7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.  
72C2 for C channels per layer

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19



INPUT: [224x224x3]        memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448  
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)
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Softmax

FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

VGG16



#Parameters (not counting biases)
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TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)  
TOTAL params: 138M parameters

INPUT: [224x224x3]        memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448  
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

Softmax

FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

VGG16



INPUT: [224x224x3]        memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

#Parameters (not counting biases)
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Note:

Most memory is in  
early CONV

Most paramsare  
in late FC

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)  
TOTAL params: 138M parameters



VGGNet

Details
 ILSVRC’14 2nd in classification, 1st in  

localization
 Similar training procedure as Krizhevsky

2012
 No Local Response Normalisation (LRN)
 Use VGG16 or VGG19 (VGG19 only  slightly 

better, more memory)
 Use ensembles for best results
 FC7 features generalize well to other  tasks
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Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

conv1-2  
conv1-1

conv2-2  
conv2-1

conv3-2  
conv3-1

conv4-3
conv4-2
conv4-1

conv5-3
conv5-2
conv5-1

fc8
fc7
fc6

conv2  
conv1

conv3

conv5  
conv4

fc7  
fc6



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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Lin et al Sanchez&  
Perronnin

Krizhevsky et al Zeiler&  
(AlexNet) Fergus

Simonyan & Szegedy et al  
Zisserman (VGG) (GoogLeNet)

He et al  
(ResNet)

Russakovsky et alShao et al Hu et al  
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks



GoogLeNet
[Szegedy et al., 2014]
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Deeper networks, with computational  
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner  

(6.7% top 5 error)
Inception module



GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a  good 
local network topology  (network within 
a network) and  then stack these 
modules on  top of each other
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Inception module



GoogLeNet
[Szegedy et al., 2014]
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Naive Inception module

Previous Layer

3x3 max  
pooling

5x5  
convolution

3x3  
convolution

1x1  
convolution

Filter  
concatenation

Apply parallel filter operations on  
the input from previous layer:

- Multiple receptive field sizes  
for convolution (1x1, 3x3,  
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs  
together depth-wise



GoogLeNet
[Szegedy et al., 2014]
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Naive Inception module

Previous Layer

3x3 max  
pooling

5x5  
convolution

3x3  
convolution

1x1  
convolution

Filter  
concatenation

Apply parallel filter operations on  
the input from previous layer:

- Multiple receptive field sizes  
for convolution (1x1, 3x3,  
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs  
together depth-wise

Q: What is the problem with this?  
[Hint: Computational complexity]



GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 52

Q: What is the problem with this?  
[Hint: Computational complexity]

Example:

Naive Inception module

Input

3x3 pool
5x5 conv,

96
3x3 conv,

192
1x1 conv,

128

Filter  
concatenation

Module input:  
28x28x256

5x5 conv,
96

3x3 conv,
192

Q1: What is the output size of the  
1x1 conv, with 128 filters?



GoogLeNet
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Q: What is the problem with this?  
[Hint: Computational complexity]

[Szegedy et al., 2014]

Naive Inception module

Input

3x3 pool5x5 conv,
96

3x3 conv,
192

1x1 conv,
128

Filter  
concatenation

Example:

Module input:  
28x28x256

Q1: What is the output size of the  
1x1 conv, with 128 filters?

28x28x128
Q2: What are the output sizes of  
all different filter operations?

Q3:What is output size after  filter
concatenation?

28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672=529K

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256  
[3x3 conv, 192] 28x28x192x3x3x256  
[5x5 conv, 96] 28x28x96x5x5x256  
Total: 854M ops



GoogLeNet
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Very expensive compute

Pooling layer also preserves feature  
depth, which means total depth after  
concatenation can only grow at every  
layer!

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256  
[3x3 conv, 192] 28x28x192x3x3x256  
[5x5 conv, 96] 28x28x96x5x5x256  
Total: 854M ops

[Szegedy et al., 2014]

Naive Inception module

Input

3x3 pool5x5 conv,
96

3x3 conv,
192

1x1 conv,
128

Filter  
concatenation

Example:

Module input:  
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256



partial credit by CS311n

SOLUTION: “BOTTLENECK” LAYERS THAT  
USE 1X1 CONVOLUTIONS TO REDUCE  

FEATURE DEPTH
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Reminder: 1x1 convolutions
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64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size  
1x1x64, and performs a  
64-dimensional dot  
product)



Reminder: 1x1 convolutions
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64

56

56
1x1 CONV
with 32 filters

32
56

56

preserves spatial  
dimensions, reduces depth!

Projects depth to lower  
dimension (combination of  
feature maps)



GoogLeNet
[Szegedy et al., 2014]
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Inception module with dimension
reduction

Previous Layer

3x3 max  
pooling

5x5  
convolution

3x3  
convolution

1x1  
convolution

Filter  
concatenation

1x1  
convolutio
n

Previous Layer

3x3
max  
pooling

5x5  
convolutio
n

3x3  
convolutio
n

1x1  
convolution

Filter  
concatenation

1x1  
convolutio
n

1x1  
convolutio
n

Naive Inception
module

1x1 conv “bottleneck”  layers



GoogLeNet
[Szegedy et al., 2014]
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Inception module with dimension reduction

Using same parallel layers as  
naive example, and adding “1x1  
conv, 64 filter” bottlenecks:

Module input:  
28x28x256

1x1 conv,  
64

Previous Layer

3x3 pool

5x5 conv,
96

3x3 conv,
192

Filter  
concatenation

1x1 conv,  
64

1x1 conv,
64

1x1 conv,
128

28x28x64 28x28x64 28x28x256

28x28x128 28x28x192 28x28x96 28x28x64 Conv Ops:
[1x1 conv, 64] 28x28x64x1x1x256  
[1x1 conv, 64] 28x28x64x1x1x256  
[1x1 conv, 128] 28x28x128x1x1x256  
[3x3 conv, 192] 28x28x192x3x3x64  
[5x5 conv, 96] 28x28x96x5x5x64  
[1x1 conv, 64] 28x28x64x1x1x256  
Total: 358M ops

Compared to 854M ops for naive version  
Bottleneck can also reduce depth after  
pooling layer

28x28x480



GoogLeNet
[Szegedy et al., 2014]
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Inception module

Stack Inception modules  
with dimension reduction  

on top of each other



GoogLeNet
[Szegedy et al., 2014]
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Stem Network:  
Conv-Pool-
2x Conv-Pool

Full GoogLeNet  
architecture



GoogLeNet
[Szegedy et al., 2014]
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Full GoogLeNet  
architecture

Stacked Inception  
Modules



GoogLeNet
[Szegedy et al., 2014]
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Full GoogLeNet  
architecture

Classifier output



GoogLeNet
[Szegedy et al., 2014]
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Full GoogLeNet  
architecture

Classifier output  
(removed expensive FC layers!)



GoogLeNet
[Szegedy et al., 2014]
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Full GoogLeNet  
architecture

Auxiliary classification outputs to inject additional gradient at lower layers  
(AvgPool-1x1Conv-FC-FC-Softmax)



GoogLeNet
[Szegedy et al., 2014]
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Full GoogLeNet  
architecture

22 total layers with weights (including each parallel layer in an Inception module)



GoogLeNet
[Szegedy et al., 2014]
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Deeper networks, with computational  
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- 12x less params than AlexNet
- ILSVRC’14 classification winner  

(6.7% top 5 error) Inception module



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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“Revolution of Depth”



ResNet
[He et al., 2015]
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Very deep networks using residual  
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner  

(3.57% top 5 error)
- Swept all classification and  

detection competitions in  
ILSVRC’15 and COCO’15!

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64 / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Softmax
FC1000

Pool

relu

conv

conv
X

identity

F(x) + x

F(x)

relu

X
Residual block



ResNet
[He et al., 2015]
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What happens when we continue stacking deeper layers on a “plain” convolutional  
neural network?



Tr
ain

in
g

er
ro

r

Iterations

56-layer

20-layer

Te
st

er
ro

r

Iterations

56-layer

20-layer

ResNet
[He et al., 2015]
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What happens when we continue stacking deeper layers on a “plain” convolutional  neural network?

Q: What’s strange about these training and test curves?  
[Hint: look at the order of the curves]



ResNet
[He et al., 2015]
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What happens when we continue stacking deeper layers on a “plain” convolutional  
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ain

in
g

er
ro

r

Iterations

56-layer

20-layer

Te
st

er
ro

r

Iterations

56-layer

20-layer



ResNet
[He et al., 2015]
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Hypothesis: the problem is an optimization problem, deeper models are harder to  
optimize



ResNet
[He et al., 2015]
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Hypothesis: the problem is an optimization problem, deeper models are harder to  
optimize

The deeper model should be able to perform at  
least as well as the shallower model.

A solution by construction is copying the learned  
layers from the shallower model and setting  
additional layers to identity mapping.



ResNet
[He et al., 2015]
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conv

relu

conv

X
“Plain” layers

H(x)

relu

conv

conv
X

identity

F(x) + x

F(x)

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a  
desired underlying mapping

relu

X
Residual block



relu

ResNet
[He et al., 2015]
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Solution: Use network layers to fit a residual mapping instead of directly trying to fit a  
desired underlying mapping

conv

conv
X

identity

F(x) + x

F(x)

relu

conv

relu

conv

X
Residual block

X
“Plain” layers

H(x)
Use layers to  
fit residual  
F(x) = H(x) - x
instead of  
H(x) directly

H(x) = F(x) + x



3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]
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relu

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:
- Stack residual blocks
- Every residual block has  

two 3x3 conv layers



3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv,128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]
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relu

3x3 conv

3x3 conv
X

identity 

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:
- Stack residual blocks
- Every residual block has  

two 3x3 conv layers
- Periodically, double # of  

filters and downsample  
spatially using stride 2  
(/2 in each dimension)

3x3 conv, 64  
filters

3x3 conv, 128  
filters, /2  
spatially with  
stride 2



3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv,128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]
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relu

3x3 conv

3x3 conv
X

identity 

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:
- Stack residual blocks
- Every residual block has  

two 3x3 conv layers
- Periodically, double # of  

filters and downsample  
spatially using stride 2  
(/2 in each dimension)

- Additional conv layer at  
the beginning

Beginning  
conv layer



3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv,128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]
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relu

3x3 conv

3x3 conv
X

identity 

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block has  two 

3x3 conv layers
- Periodically, double # of  filters 

and downsample spatially 
using stride 2  (/2 in each
dimension)

- Additional conv layer at  the
beginning

- No FC layers at the end (only
FC 1000 to output classes)

No FC layers
besides FC  
1000 to  
output  
classes

Global  
average  
pooling layer  
after last  
conv layer



3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]
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Total depths of 34, 50, 101, or  
152 layers for ImageNet



ResNet
[He et al., 2015]
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1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256
input

For deeper networks
(ResNet-50+), use “bottleneck”  
layer to improve efficiency  
(similar to GoogLeNet)

28x28x256
output



ResNet
[He et al., 2015]
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1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256
input

For deeper networks
(ResNet-50+), use “bottleneck”  
layer to improve efficiency  
(similar to GoogLeNet) 1x1 conv, 64 filters  

to project to  
28x28x64

3x3 conv operates over  
only 64 feature maps

back to 256 feature maps  
(28x28x256)

28x28x256
output

1x1 conv, 256 filters projects



ResNet
[He et al., 2015]

 Training ResNet in practice:
 Batch Normalization after every CONV layer
 Xavier/2 initialization from He et al.
 SGD + Momentum (0.9)
 Learning rate: 0.1, divided by 10 when validation error plateaus
 Mini-batch size 256
 Weight decay of 1e-5
 No dropout used
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ResNet
[He et al., 2015]
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Experimental Results
- Able to train very deep  

networks without degrading  
(152 layers on ImageNet, 1202  
on Cifar)

- Deeper networks now achieve  
lowing training error as  
expected

- Swept 1st place in all ILSVRC  
and COCO 2015 competitions



ResNet
[He et al., 2015]
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Experimental Results
- Able to train very deep  

networks without degrading  
(152 layers on ImageNet, 1202  
on Cifar)

- Deeper networks now achieve  
lowing training error as  
expected

- Swept 1st place in all ILSVRC  
and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6%  
top 5 error) -- better than “human  
performance”! (Russakovsky 2014)



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

Comparing complexity...
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Comparing complexity...
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Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.



Comparing complexity...

VGG: Highest  memory, most  operations
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.



An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

Comparing complexity...

GoogLeNet:  most efficient
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Comparing complexity...

AlexNet:
Smaller compute, still memory  heavy, lower accuracy
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.



ResNet:
Moderate efficiency depending on  model, highest accuracy
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Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.



Forward pass time and power consumption
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.



Lin et al Sanchez& Krizhevsky et al Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Network ensembling
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[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,  
Wide Resnet models

- ILSVRC’16 classification winner
- “Good Practices for Deep Feature Fusion”

Improving ResNets...
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Lin et al Sanchez&  
Perronnin

Krizhevsky et al Zeiler&  
(AlexNet) Fergus

Simonyan & Szegedy et al  
Zisserman (VGG) (GoogLeNet)

He et al  
(ResNet)

Russakovsky et alShao et al Hu et al  
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Adaptive feature map reweighting
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Improving ResNets...
Squeeze-and-Excitation Networks (SENet)
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[Hu et al. 2017]

- Add a “feature recalibration” module that  
learns to adaptively reweight feature maps

- Global information (global avg. pooling
layer) + 2 FC layers used to determine
feature map weights

- ILSVRC’17 classification winner (using  
ResNeXt-152 as a base architecture)



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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Lin et al Sanchez& Krizhevsky et al Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers



ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) winners
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152 layers 152 layers 152 layers

19 layers 22 layers

shallow 8 layers 8 layers

Lin et al Sanchez & Krizhevsky et al Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al  
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

Completion of the challenge:
Annual ImageNet competition no longer  
held after 2017 -> now moved to Kaggle.



partial credit by CS311n

BUT RESEARCH INTO CNN 
ARCHITECTURES IS STILL 

FLOURISHING

4/15/2024 Chih-Chung Hsu@ACVlab 101



[Lin et al. 2014]

- Mlpconv layer with  
“micronetwork” within each conv  
layer to compute more abstract  
features for local patches

- Micronetwork uses multilayer  
perceptron

- Precursor to GoogLeNet and  
ResNet “bottleneck” layers

- Philosophical inspiration for  
GoogLeNet

Figures copyright Lin et al., 2014. Reproduced with permission.

Of historical note...
Network in Network (NiN)
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Identity Mappings in Deep Residual Networks
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[He et al. 2016]

- Improving ResNets...
- Improved ResNet block design from  

creators of ResNet
- Creates a more direct path for  

propagating information throughout  
network (moves activation to residual  
mapping pathway)

- Gives better performance



Wide Residual Networks
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- Argues that residuals are the  
important factor, not depth

- User wider residual blocks (F x k  
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms  
152-layer original ResNet

- Increasing width instead of depth  
more computationally efficient  
(parallelizable)

[Zagoruyko et al. 2016]

Basic residual block Wide residual block



Neural Networks (ResNeXt)
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[Xie et al. 2016]

- Aggregated Residual 
Transformations for 
Deep

- Also from creators of  
ResNet

- Increases width of  
residual block through  
multiple parallel  
pathways  (“cardinality”)

- Parallel pathways  
similar in spirit to  
Inception module



FractalNet: Ultra-Deep Neural Networks without Residuals
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[Larsson et al. 2017]

- Argues that key is transitioning  
effectively from shallow to deep  
and residual representations are  
not necessary

- Fractal architecture with both  
shallow and deep paths to output

- Trained with dropping out  
sub-paths

- Full network at test time

Figures copyright Larsson et al., 2017. Reproduced with permission.



Densely Connected Convolutional Networks
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[Huang et al. 2017]

- Dense blocks where each layer is  
connected to every other layer in  
feedforward fashion

- Alleviates vanishing gradient,  
strengthens feature propagation,  
encourages feature reuse

- Best paper in CVPR 2017!!



Dense Block: Densely Connected
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Densely connected layers:
Not Y = x + f(x) + f(f(x))  It is 
just a special case of ResNet…

Y = [x, f(x)]!!  Concatenation!



Dense Block

Why it is excellent?

 Feature reuse!! 
 Multiscale feature representation
 Recall that: two 3x3 conv  5x5 conv, three 3x3 conv7x7 conv.
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3x3 3x3 3x3
3x3

x2  two 3x3 
conv 5x5 conv x3  three 3x3 

conv 7x7 conv



Problem in DenseNet (cont.)

Dense connection is performed in a dense block
 Same feature map size

 Pooling (by max-pooling or strided conv.) between two dense blocks

ResNet/DenseNet: Feature map reusing (large memory usage)
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DenseNet
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SKNet (Selective Kernel Convolution)
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[Li et al. 2019]

Similar to SENet
Get the channeled-features and use split-attention to automatically decide 
which channel is important!



ResNeSt：Split-Attention Networks
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[Zhang et al. 2020]



ResNeSt：Split-Attention Networks
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[Zhang et al. 2020]

Combine different existing modules

• Multi-path module in Inception
• Different kernel sizes
• Group conv. is used.

• Feature map attention (SKNet)
• Channel attention (SENet)



Efficient networks...
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[Howard et al. 2017]
- Depthwise separable convolutions replace  standard 

convolutions by factorizing them  into a depthwise 
convolution and a 1x1  convolution that is much more 
efficient

- Much more efficient, with little loss in  accuracy
- Follow-up MobileNetV2 work in 2018  (Sandler et 

al.)
- Other works in this space e.g. ShuffleNet  (Zhang et al. 

2017)
- Latest: EfficientNet-b7 
- Latest: RegNet (Statics for search range, [He et.al., 

2020])

MobileNets: Efficient Convolutional Neural Networks for 
Mobile Applications



Depth-wise separable Convolution
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[Howard et al. 2017]

Depth-wise conv.Standard conv. Point-wise conv.



SOTA for Image Recognition (2020)
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SOTA for Image Recognition (2021)
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• Meta pseudo label
• Self-supervised learning 
• Trained on 2,048 TPUv3 

cores…?????WT
• [Google 2021]

• DeepMine proposed 
NFNet

• Without normalization!!
• Normalizer-Free 

ResNet
• AGC (gradient clip) [2021]

• EfficientNet v2



Public Benchmark (2023) of ImageNet Validation Set
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AGC (Adaptive Gradient Clipping) for NFNet
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Other than SOTA CNNs

 Visual Transformer [ICLR 2021]!!
 A feed-forward network for visual information without CNNs
 Transformer: we talk it later 
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What’s Different?
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Visual Transformer

 To make fully connected layer great again!!
 So, what’s attention?
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑞𝑞: query (to match others)
𝑘𝑘: key (to be matched)
𝑣𝑣: information to be extracted

𝑎𝑎𝑖𝑖 = 𝑊𝑊𝑥𝑥𝑖𝑖

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑎𝑎𝑖𝑖

𝑘𝑘𝑖𝑖 = 𝑊𝑊𝑘𝑘𝑎𝑎𝑖𝑖

𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑎𝑎𝑖𝑖

https://arxiv.org/abs/1706.03762

Self-attention



𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝛼𝛼1,1 𝛼𝛼1,2

Scaled Dot-Product Attention:

𝛼𝛼1,3 𝛼𝛼1,4

𝛼𝛼1,𝑖𝑖 = 𝑞𝑞1 � 𝑘𝑘𝑖𝑖/ 𝑑𝑑

dot product

d is the dim of 𝑞𝑞 and 𝑘𝑘

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Self-attention



𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4Softmax

�𝛼𝛼1,𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒 𝛼𝛼1,𝑖𝑖 /�
𝑗𝑗
𝑒𝑒𝑥𝑥𝑒𝑒 𝛼𝛼1,𝑗𝑗

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Self-attention



𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏1

Attention works on everywhere!! 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑖𝑖𝑣𝑣𝑖𝑖

Self-attention



ViT - Input Section

x ∈ ℝ𝑯𝑯×𝑾𝑾×𝑪𝑪

𝒙𝒙𝒑𝒑 ∈ ℝ𝑵𝑵×(𝑷𝑷𝟐𝟐⋅𝑪𝑪)

𝑵𝑵 = 𝑯𝑯𝑾𝑾/𝑷𝑷𝟐𝟐



ViT - Transformer Encoder

CLS token

Hybrid Architecture : Raw image patches --> Feature map of a CNN

A learnable embedding is added to the sequence of embedded patches 
(𝑧𝑧00 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), where state at the output of the Transformer encoder (𝑧𝑧𝐿𝐿0) 
serves as the image representation y (Eq. 4).

Layer-norm (LN) is applied before every block, and residual connections after 
every block.

The MLP (Fully-connected layer) contains two layers with a GELU non-
linearity.



LN & GELU

GELULN



Experiments - Training

patch size



Previous SOTA (2021.4)

 Swin-Transformer V1 (vision)
 [MSRA, CVPR2021]
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arxiv.org/abs/2103.14030



Swin-Transformer V2: Swin Transformer V2: Scaling Up 
Capacity and Resolution (CVPR 2022) 
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partial credit by CS311n

TRANSFORMER BECOMES “SOTA”?

Not really.
Let’s see the truth! 
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ImageNet-1K Classification Benchmark



partial credit by CS311n

A ROADMAP

From ResNet
to ConvNeXt



Training Techniques

More epochs: 90 -> 300

Optimizer: AdamW

Data augmentation: Mixup, Cutmix, Random Augment, 
Random Erasing

Regularizations: Stochastic Depth, Label Smoothing

 ImageNet Top-1 acc: 76.1% -> 78.8%



Macro Design

Changing stage compute ratio / Changing stem to “Pachify”



ResNeXt-ify

Depth-wise Separable Convolution



ResNeXt-ify

Depth-wise Separable Convolution



Inverted Bottleneck / Large Kernel Size

RESNET 
Block



Inverted Bottleneck / Large Kernel Size



Micro Design

RELU -> GELU

 Fewer activation

 Fewer norms

 Batch Norm -> Layer Norm

 Separate downsampling conv

 ImageNet Top-1 acc: 82.0%



Micro Design

 Layer Normalization
6.7 Convolutional Networks

We have also experimented with convolutional neural networks. In our 
preliminary experiments, we observed that layer normalization offers a speedup 
over the baseline model without normalization, but batch normalization 
outperforms the other methods. With fully connected layers, all the hidden units 
in a layer tend to make similar contributions to the final prediction and re-
centering and re-scaling the summed inputs to a layer works well. However, the 
assumption of similar contributions is no longer true for convolutional neural 
networks. The large number of the hidden units whose receptive fields lie near 
the boundary of the image are rarely turned on and thus have very different 
statistics from the rest of the hidden units within the same layer. We think further 
research is needed to make layer normalization work well in ConvNets

https://arxiv.org/abs/1607.06450

https://arxiv.org/abs/1607.06450


Different ConvNeXt variants

ConvNeXt-T

ConvNeXt-S

ConvNeXt-B

ConvNeXt-L

ConvNeXt-XL

Channels (C) Blocks (B)

(96, 192, 384, 768) (3, 3, 9, 3) 

(96, 192, 384, 768) (3, 3, 27, 3) 

(128, 256, 512, 1024) (3, 3, 27, 3) 

(192, 384, 768, 1536) (3, 3, 27, 3) 

(256, 512, 1024, 2048) (3, 3, 27, 3) 



Results



Results



Results



Results



Results



partial credit by CS311n

TRANSFORMER IS BACK…AGAIN

Masked Autoencoders Are Scalable Vision Learners 
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick Facebook AI Research (FAIR)
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2

In a nutshell…

Masked Autoencoder (MAE)
 MAE are scalable self-supervised learners for computer vision
 Mask random patches of the input image and reconstruct the missing pixels

 Asymmetric Encoder-Decoder Architecture
 Visible subset of patches (without mask tokens) → Encoder
 Latent representation & Mask tokens →Decoder (lightweight)

 Masking high proportion of the input image, e.g., 75%, yields a non-trivial and meaningful 
self-supervisory task

 Accelerate training (by 3× or more) and improves accuracy
 Learning high-capacity models that generalizes well

 Vanilla ViT-H [] achieves the best accuracy (87.8%) among methods that use only
ImageNet-1K data

 Transfer performance in downstream tasks outperforms supervised pre- training and
shows promising scaling behavior

[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv 2021.



Background

Masked Language Modeling
 Success of self-supervised pre-training in NLP

 Masked language modeling (e.g., BERT [])
 Autoregressive language modeling (e.g., GPT [])

 Method: remove a portion of the input sequence and learn to predict the missing
content

 These methods have been shown to scale excellently
 These pre-trained representations generalize well to various downstream tasks

3[2]
[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv 2021.



Background

 Autoencoder
 Encoder maps an input to a latent representation
 Decoder reconstructs the input
 E.g., PCA and k-means are autoencoders
 Denoising autoencoders (DAE) [1] are a class of autoencoders that corrupt an input signal and learn to

reconstruct the original, uncorrupted signal
 A series of methods can be thought of as a generalized DAE under different corruptions, e.g.,

masking pixels or removing color channels

 Masked Image Encoding
 DAE [1] presents masking as a noise type
 Convolution-based

 Context Encoder inpaints large missing regions
 Transformer-based

 iGPT operates on sequences of pixels and predicts unknown pixels
 The ViT studies masked patch prediction for self-supervised learning
 Most recently, BEiT proposes to predict discrete tokens

4[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv 2021.
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Background

Self-supervised Learning
 Early self-supervised learning approaches often focused on different 

pretext tasks for pre-training

 Contrastive learning has been popular, which models image similarity and
dissimilarity between two or more views

 Contrastive and related methods strongly depend on data augmentation

 Autoencoding pursues a conceptually different direction, and it exhibits 
different behaviors



What makes masked autoencoding
different between vision and language?

 Architectural Gap
 Convolutions typically operate on regular grids
 It is not straightforward to integrate ‘indicators’ such as mask tokens or positional embeddings into convolutional

networks
 Solution: ViT [1]

 Information Density
 Language: human-generated signals, highly semantic, information-dense, Need sophisticated language

understanding to train a model to predict only a few missing words per sentence
 Images: natural signals, heavy spatial redundancy, A missing patch can be recovered from neighboring

patches with little high-level understanding of parts, objects, and scenes
 Solution: masking a very high portion of random patches
 This strategy largely reduces redundancy and creates a challenging self-supervisory task that requires holistic

understanding beyond low-level image statistics

 The Role of Autoencoder’s Decoder
 Language: decoder predicts missing words that contain rich semantic information
 Image: decoder reconstructs pixels, hence its output is of a lower semantic level than common recognition tasks
 Decoder design plays a key role in determining the semantic level of the learned latent representations

for images



Masked Autoencoder (MAE)

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 157

MAE architecture



Masked Autoencoder (MAE)

MAE: A Simple, Effective, and Scalable Self-supervised Learner
 MAE masks random patches from the input image and reconstructs the missing patches in

the pixel space
 Asymmetric encoder-decoder design

 Encoder operates only on the visible subset of patches (without mask tokens)
 (Lightweight) Decoder reconstructs the input from the latent representation along with mask tokens
 Shifting the mask tokens to the small decoder results in a large reduction in computation

 A very high masking ratio (e.g., 75%) can achieve a win-win scenario
 It optimizes accuracy while allowing the encoder to process only a small portion (e.g., 25%) of patches
 This can reduce overall pre-training time by 3 × or more and likewise reduce memory consumption,

enabling us to scale our MAE to large models easily
 With MAE pre-training,

 Vanilla ViT-H achieves 87.8% accuracy when fine-tuned on ImageNet-1K
 Transfer Learning on object detection, instance segmentation, semantic segmentation achieve better

results than its supervised pre-training counterparts
 Significant gains by scaling up models



 ImageNet validation images
 Masking ratio 80%
 No loss is computed on visible patches (i.e., Loss is only computed on 

masked patches)

MAE Reconstruction



COCO validation images
 MAE trained on ImageNet

MAE Reconstruction



 ImageNet validation images
 MAE pre-trained with a

masking ratio 75%
 Applied on inputs with

higher masking ratios (75%,
85%, 95%)

MAE Reconstruction



Masked Autoencoder (MAE)

Masking
 Image is divided into regular non-overlapping patches
 Sample a subset of patches and mask (i.e., remove) the remaining ones
 High masking ratio (e.g., 75%)

MAE encoder
 Encoder is a ViT [] but applied only on visible, unmasked patches
 Encoder only operates on a small subset (e.g., 25%) of the full set
 Masked patches are removed; No mask tokens are used
 This allows us to train very large encoders with only a fraction of compute and 

memory
MAE decoder

 The input to the MAE decoder is the full set of tokens consisting of encoded visible 
patches and mask tokens

 Positional embeddings are added to all tokens in this full set
 MAE decoder is only used during pre-training to perform the image reconstruction task

(only the encoder is used to produce image representations for recognition)
 Decoder has <10% computation per token vs. the encoder



Masked Autoencoder (MAE)

Reconstruction Target
 MAE reconstructs the input by predicting the pixel values for each 

masked patch
 Loss function computes the MSE between reconstructed and original 

images in the pixel space
 Loss is only computed on masked patches, similar to BERT []
 masks random patches from the input image and reconstructs the missing

patches in the pixel space

Simple Implementation
1. Generate a token for every input patch
2. Randomly shuffle the list of tokens and remove the last portion of the list
3. After encoding, mask tokens are appended to the list of encoded patches, 

and unshuffle the full list (inverting the random shuffle operation)
4. The decoder is applied to this full list (with positional embeddings added)



 Fine-tuning accuracy heavily depends on pre-training

ImageNet Experiments

 Experimental Settings
 Self-supervised pre-training on the ImageNet-1K training set →

 supervised training to evaluate the representation with
 End-to-end fine-tuning
 Linear probing (freeze backbone and only train linear layer)

 ViT-L trained from scratch vs. fine-tuned from MAE
 Backbone: ViT-L/16
 Scratch: 200 epochs vs. Fine-tuning: 50 epochs



ImageNet Experiments

Masking ratio
 BERT typical masking ratio: 15%



ImageNet Experiments: Ablations

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 166



ImageNet Experiments: Wall-clock time (w/wo mask)

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 167



ImageNet Experiments: Mask sampling strategies

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 168



ImageNet Experiments

Training Schedules
 Not observed saturation of linear probing accuracy even at 1600 epochs
 MoCo v3 saturates at 300 epochs for ViT-L



Comparisons with self-supervised methods

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 170



Comparisons with Previous Results

Comparisons with supervised pre-training

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 171



Partial Fine-tuning

MAE vs. MoCo v3 (w.r.t. # fine-tuned transformer blocks)

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 172



Transfer Learning Experiments

Object Detection and Segmentation

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 173



Transfer Learning Experiments

 Semantic Segmentation

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 174



Transfer Learning Experiments

 Pixels vs. Tokens

He, Kaiming, et al. "Masked autoencoders are scalable 
vision learners." arXiv 2021. 175
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HOW ABOUT CNN?

ConvNext v2 is back…again

2024/4/15 Chih-Chung Hsu@ACVlab 176



ConvNextV2

2024/4/15 Chih-Chung Hsu@ACVlab 177

arxiv.org/pdf/2301.00808v1.pdf



ConvNextV2

Combine with mask auto-encoder

2024/4/15 Chih-Chung Hsu@ACVlab 178



ConvNextV2

2024/4/15 Chih-Chung Hsu@ACVlab 179



GRN of ConvNextV2
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SO WHAT NOW?

New direction: masking learning and mode at scale

2024/4/15 Chih-Chung Hsu@ACVlab 181



EVA (v1)
Exploring the limits of masked visual representation learning at scale (CVPR23)



Toward Knowledge Distillation

 KD is a good way
 But not the only way

 EVA: Large-scale visual pre-training 
model, contrastive learning

No tokenization & feature distillation, 
longer contrastive learning

 Strong transferability & 
generalization on downstream tasks

 Large-scale training & model scaling 
key, complex mechanisms 
unnecessary

 Focus on algorithm essence, not 
technical details

2024/4/15 Chih-Chung Hsu@ACVlab 183



So what’s different?

 EVA: large-scale visual pre-training, 
contrastive learning

 Teacher: CLIP, student: 1B-parameter ViT

Cosine similarity loss, 40% input patch 
masked

 Introduces MIM idea, larger student model, 
cosine similarity loss

 Strong transferability & generalization, 
essence over technical details

2024/4/15 Chih-Chung Hsu@ACVlab 184



EVA02 – Upgraded!!

 EVA-02: upgraded version of EVA-01, 
overall framework similar

 ViT architecture optimized: norm, 
initialization, FFN, positional encoding

 Teacher model: EVA-01 instead of CLIP, 
progressive training paradigm

 Training data: 40M images, up from 30M, 
enriched visual patterns

 Parameters: 3B, down from 10B, yet 
performance improved, parameter 
efficiency optimized

 Five model sizes available, catering to 
different application needs

2024/4/15 Chih-Chung Hsu@ACVlab 185



Summary: CNN Architectures

Many popular architectures available in model zoos

ResNet and SENet currently good defaults to use

Networks have gotten increasingly deep over time

Many other aspects of network architectures are also continuously  being investigated 
and improved

 Even more recent trend towards meta-learning/Few-shot learning

Next time: Object detection via deep learning

2024/4/15 Chih-Chung Hsu@ACVlab 186
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