
Chih-Chung Hsu (許志仲)
Institute of Data Science
National Cheng Kung University
https://cchsu.info

SOTA CONVOLUTIONAL
NEURAL NETWORK

Last 2 lectures: Training neural networks

One time setup
 activation functions, preprocessing, weight initialization, regularization, gradient checking

 Training dynamics
 babysitting the learning process,
 parameter updates, hyperparameter optimization

 Evaluation
 model ensembles, test-time augmentation

2024/4/15 Chih-Chung Hsu@ACVlab 2

“You need a lot of a data if you want to
train/use CNNs”

One more thing: Transfer Learning

2024/4/15 Chih-Chung Hsu@ACVlab 3

“You need a lot of a data if you want to
train/use CNNs”

One more thing: Transfer Learning

2024/4/15 Chih-Chung Hsu@ACVlab 4

2024/4/15 Chih-Chung Hsu@ACVlab 5

Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Transfer Learning with CNNs

2024/4/15 Chih-Chung Hsu@ACVlab 6

FC-C
FC-4096
FC-4096

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

Conv-512
Conv-512
MaxPool

FC-C
FC-4096
FC-4096

Train these

With bigger
dataset, train
more layers

Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Transfer Learning with CNNs

2024/4/15 Chih-Chung Hsu@ACVlab 7

FC-C
FC-4096
FC-4096

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data ? ?

2024/4/15 Chih-Chung Hsu@ACVlab 8

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar
dataset

very different
dataset

very little data

Use Linear
Classifier
on top
layer

?

quite a lot of
data

Finetune
a few
layers

?

2024/4/15 Chih-Chung Hsu@ACVlab 9

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar
dataset

very different
dataset

very little data

Use Linear
Classifier
on top
layer

You’re in
trouble… Try
linear
classifier
from different
stages

quite a lot of
data

Finetune
a few
layers

Finetune a
larger
number of
layers

2024/4/15 Chih-Chung Hsu@ACVlab 10

Transfer learning with CNNs is pervasive…

2024/4/15 Chih-Chung Hsu@ACVlab 11

Image Captioning: CNN + RNN

(it’s the norm, not an exception)
Object Detection

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educationalpurposes.

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced withpermission.

(Fast R-CNN)

Transfer learning with CNNs is pervasive…

2024/4/15 Chih-Chung Hsu@ACVlab 12

Image Captioning: CNN + RNNCNN pretrained
on ImageNet

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educationalpurposes.

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced withpermission.

(it’s the norm, not an exception)
Object Detection
(Fast R-CNN)

Transfer learning with CNNs is pervasive…

2024/4/15 Chih-Chung Hsu@ACVlab 13

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced withpermission.

CNN pretrained
on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educationalpurposes.

(it’s the norm, not an exception)
Object Detection
(Fast R-CNN)

Transfer learning with CNNs is pervasive…
But recent results show it might not always be necessary!

2024/4/15 Chih-Chung Hsu@ACVlab 14

He et al, “Rethinking ImageNet Pre-training”, arXiv 2018

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

 Find a very large dataset that has similar data, train a big ConvNet there

 Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained models so you don’t
need to train your own

 TensorFlow: https://github.com/tensorflow/models

 PyTorch: https://github.com/pytorch/vision

2024/4/15 Chih-Chung Hsu@ACVlab 15

https://github.com/tensorflow/models
https://github.com/pytorch/vision

Today: CNN Architectures

Case Studies
 AlexNet
 VGG
 GoogLeNet
 ResNet

 Also....
 SENet
 NiN (Network in Network)
 Wide ResNet
 ResNeXT
 DenseNet
 FractalNet
 MobileNets
 NASNet
 SK/EfficientNet/ViT,…never stop

2024/4/15 Chih-Chung Hsu@ACVlab 16

Review: LeNet-5

2024/4/15 Chih-Chung Hsu@ACVlab 17

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 18

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Case Study: AlexNet
[Krizhevsky et al. 2012]

Convolution:
 Input feature maps: C∗H∗W N-channeled output feature maps
 #parameters: N * C * K * K

Group convolution:
 #parameters: N * (C/G) * K * K (G=#groups)

2024/4/15 Chih-Chung Hsu@ACVlab 19

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 20

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Input: 227x227x3 images

Q: Why 227*227? Not 256*256?

21

Review: AlexNet

2024/4/15 Chih-Chung Hsu@ACVlab 21

Data augmentation: Randomly cropping!!
Assumed that the input size = 256*256
We randomly crop the image sized of 227*227

256

256

227

227

227

227

227

227

227

227

227

227

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 22

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images

First layer (CONV1): 96 11x11
filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of
parameters in this layer?

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 23

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images

First layer (CONV1): 96 11x11
filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 24

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 25

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 26

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3
images After
CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at
stride 2 Output volume: 27x27x96
Parameters: 0!

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 27

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 28

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 29

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:
-first use of ReLU
-used Norm layers (not common anymore)
-heavy data augmentation
-dropout 0.5
-batch size 128
-SGD Momentum 0.9
-Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 30

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

Historical note: Trained on GTX 580
GPU with only 3 GB of memory.
Network spread across 2 GPUs, half
the neurons (feature maps) on each
GPU.

[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[55x55x48] x 2

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 31

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

CONV1, CONV2, CONV4, CONV5:
Connections only with feature maps
on same GPU

[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: AlexNet
[Krizhevsky et al. 2012]

2024/4/15 Chih-Chung Hsu@ACVlab 32

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8:
Connections with all feature maps in
preceding layer, communication
across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 33

Lin et al Sanchez& Krizhevsky et al Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 34

Lin et al Sanchez&
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler&
Fergus

Simonyan & Szegedy et al
Zisserman (VGG) (GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 35

Lin et al Sanchez&
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler&
Fergus

Simonyan & Szegedy et al
Zisserman (VGG) (GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
ZFNet: Improved
hyperparameters over
AlexNet

ZFNet

2024/4/15 Chih-Chung Hsu@ACVlab 36

[Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 37

Lin et al Sanchez&
Perronnin

Krizhevsky et al Zeiler&
(AlexNet) Fergus

Simonyan & Szegedy et al
Zisserman (VGG) (GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

VGGNet
[Simonyan and Zisserman, 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 38

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 (ZFNet)
-> 7.3% top 5 error in ILSVRC’14

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

VGGNet

2024/4/15 Chih-Chung Hsu@ACVlab 39

Q: Why use smaller filters? (3x3 conv) Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

VGGNet

2024/4/15 Chih-Chung Hsu@ACVlab 40

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as one
7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

VGGNet

2024/4/15 Chih-Chung Hsu@ACVlab 41

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has
same effective receptive field as one 7x7
conv layer

[7x7]

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

VGGNet

2024/4/15 Chih-Chung Hsu@ACVlab 42

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as one
7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.
72C2 for C channels per layer

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

2024/4/15 Chih-Chung Hsu@ACVlab 43

Softmax

FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

VGG16

#Parameters (not counting biases)

2024/4/15 Chih-Chung Hsu@ACVlab 44

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

Softmax

FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

VGG16

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6Mparams: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

#Parameters (not counting biases)

2024/4/15 Chih-Chung Hsu@ACVlab 45

Note:

Most memory is in
early CONV

Most paramsare
in late FC

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

VGGNet

Details
 ILSVRC’14 2nd in classification, 1st in

localization
 Similar training procedure as Krizhevsky

2012
 No Local Response Normalisation (LRN)
 Use VGG16 or VGG19 (VGG19 only slightly

better, more memory)
 Use ensembles for best results
 FC7 features generalize well to other tasks

2024/4/15 Chih-Chung Hsu@ACVlab 46

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv,96

Input

Softmax
FC1000

FC4096

FC4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 128

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

AlexNet VGG16 VGG19

conv1-2
conv1-1

conv2-2
conv2-1

conv3-2
conv3-1

conv4-3
conv4-2
conv4-1

conv5-3
conv5-2
conv5-1

fc8
fc7
fc6

conv2
conv1

conv3

conv5
conv4

fc7
fc6

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 47

Lin et al Sanchez&
Perronnin

Krizhevsky et al Zeiler&
(AlexNet) Fergus

Simonyan & Szegedy et al
Zisserman (VGG) (GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 48

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)
Inception module

GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a good
local network topology (network within
a network) and then stack these
modules on top of each other

2024/4/15 Chih-Chung Hsu@ACVlab 49

Inception module

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 50

Naive Inception module

Previous Layer

3x3 max
pooling

5x5
convolution

3x3
convolution

1x1
convolution

Filter
concatenation

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 51

Naive Inception module

Previous Layer

3x3 max
pooling

5x5
convolution

3x3
convolution

1x1
convolution

Filter
concatenation

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

Q: What is the problem with this?
[Hint: Computational complexity]

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 52

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Naive Inception module

Input

3x3 pool
5x5 conv,

96
3x3 conv,

192
1x1 conv,

128

Filter
concatenation

Module input:
28x28x256

5x5 conv,
96

3x3 conv,
192

Q1: What is the output size of the
1x1 conv, with 128 filters?

GoogLeNet

2024/4/15 Chih-Chung Hsu@ACVlab 53

Q: What is the problem with this?
[Hint: Computational complexity]

[Szegedy et al., 2014]

Naive Inception module

Input

3x3 pool5x5 conv,
96

3x3 conv,
192

1x1 conv,
128

Filter
concatenation

Example:

Module input:
28x28x256

Q1: What is the output size of the
1x1 conv, with 128 filters?

28x28x128
Q2: What are the output sizes of
all different filter operations?

Q3:What is output size after filter
concatenation?

28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672=529K

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

GoogLeNet

2024/4/15 Chih-Chung Hsu@ACVlab 54

Very expensive compute

Pooling layer also preserves feature
depth, which means total depth after
concatenation can only grow at every
layer!

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

[Szegedy et al., 2014]

Naive Inception module

Input

3x3 pool5x5 conv,
96

3x3 conv,
192

1x1 conv,
128

Filter
concatenation

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

partial credit by CS311n

SOLUTION: “BOTTLENECK” LAYERS THAT
USE 1X1 CONVOLUTIONS TO REDUCE

FEATURE DEPTH

4/15/2024 Chih-Chung Hsu@ACVlab 55

Reminder: 1x1 convolutions

2024/4/15 Chih-Chung Hsu@ACVlab 56

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Reminder: 1x1 convolutions

2024/4/15 Chih-Chung Hsu@ACVlab 57

64

56

56
1x1 CONV
with 32 filters

32
56

56

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 58

Inception module with dimension
reduction

Previous Layer

3x3 max
pooling

5x5
convolution

3x3
convolution

1x1
convolution

Filter
concatenation

1x1
convolutio
n

Previous Layer

3x3
max
pooling

5x5
convolutio
n

3x3
convolutio
n

1x1
convolution

Filter
concatenation

1x1
convolutio
n

1x1
convolutio
n

Naive Inception
module

1x1 conv “bottleneck” layers

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 59

Inception module with dimension reduction

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

Module input:
28x28x256

1x1 conv,
64

Previous Layer

3x3 pool

5x5 conv,
96

3x3 conv,
192

Filter
concatenation

1x1 conv,
64

1x1 conv,
64

1x1 conv,
128

28x28x64 28x28x64 28x28x256

28x28x128 28x28x192 28x28x96 28x28x64 Conv Ops:
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

28x28x480

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 60

Inception module

Stack Inception modules
with dimension reduction

on top of each other

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 61

Stem Network:
Conv-Pool-
2x Conv-Pool

Full GoogLeNet
architecture

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 62

Full GoogLeNet
architecture

Stacked Inception
Modules

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 63

Full GoogLeNet
architecture

Classifier output

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 64

Full GoogLeNet
architecture

Classifier output
(removed expensive FC layers!)

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 65

Full GoogLeNet
architecture

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 66

Full GoogLeNet
architecture

22 total layers with weights (including each parallel layer in an Inception module)

GoogLeNet
[Szegedy et al., 2014]

2024/4/15 Chih-Chung Hsu@ACVlab 67

Deeper networks, with computational
efficiency

- 22 layers
- Efficient “Inception” module
- No FC layers
- 12x less params than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error) Inception module

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 68

“Revolution of Depth”

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 69

Very deep networks using residual
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)
- Swept all classification and

detection competitions in
ILSVRC’15 and COCO’15!

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64 / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Softmax
FC1000

Pool

relu

conv

conv
X

identity

F(x) + x

F(x)

relu

X
Residual block

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 70

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Tr
ain

in
g

er
ro

r

Iterations

56-layer

20-layer

Te
st

er
ro

r

Iterations

56-layer

20-layer

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 71

What happens when we continue stacking deeper layers on a “plain” convolutional neural network?

Q: What’s strange about these training and test curves?
[Hint: look at the order of the curves]

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 72

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ain

in
g

er
ro

r

Iterations

56-layer

20-layer

Te
st

er
ro

r

Iterations

56-layer

20-layer

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 73

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 74

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned
layers from the shallower model and setting
additional layers to identity mapping.

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 75

conv

relu

conv

X
“Plain” layers

H(x)

relu

conv

conv
X

identity

F(x) + x

F(x)

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

relu

X
Residual block

relu

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 76

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

conv

conv
X

identity

F(x) + x

F(x)

relu

conv

relu

conv

X
Residual block

X
“Plain” layers

H(x)
Use layers to
fit residual
F(x) = H(x) - x
instead of
H(x) directly

H(x) = F(x) + x

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 77

relu

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv,128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 78

relu

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

3x3 conv, 64
filters

3x3 conv, 128
filters, /2
spatially with
stride 2

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv,128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 79

relu

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

Beginning
conv layer

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv,128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 80

relu

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two

3x3 conv layers
- Periodically, double # of filters

and downsample spatially
using stride 2 (/2 in each
dimension)

- Additional conv layer at the
beginning

- No FC layers at the end (only
FC 1000 to output classes)

No FC layers
besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer

3x3 conv, 64
3x3 conv, 64

Pool
7x7 conv, 64, / 2

Input

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

Softmax
FC1000

Pool

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 81

Total depths of 34, 50, 101, or
152 layers for ImageNet

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 82

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256
input

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GoogLeNet)

28x28x256
output

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 83

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256
input

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GoogLeNet) 1x1 conv, 64 filters

to project to
28x28x64

3x3 conv operates over
only 64 feature maps

back to 256 feature maps
(28x28x256)

28x28x256
output

1x1 conv, 256 filters projects

ResNet
[He et al., 2015]

 Training ResNet in practice:
 Batch Normalization after every CONV layer
 Xavier/2 initialization from He et al.
 SGD + Momentum (0.9)
 Learning rate: 0.1, divided by 10 when validation error plateaus
 Mini-batch size 256
 Weight decay of 1e-5
 No dropout used

2024/4/15 Chih-Chung Hsu@ACVlab 84

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 85

Experimental Results
- Able to train very deep

networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lowing training error as
expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

ResNet
[He et al., 2015]

2024/4/15 Chih-Chung Hsu@ACVlab 86

Experimental Results
- Able to train very deep

networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lowing training error as
expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than “human
performance”! (Russakovsky 2014)

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 87

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

Comparing complexity...

2024/4/15 Chih-Chung Hsu@ACVlab 88

Comparing complexity...

2024/4/15 Chih-Chung Hsu@ACVlab 89

Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

Comparing complexity...

VGG: Highest memory, most operations

2024/4/15 Chih-Chung Hsu@ACVlab 90

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

Comparing complexity...

GoogLeNet: most efficient

2024/4/15 Chih-Chung Hsu@ACVlab 91

Comparing complexity...

AlexNet:
Smaller compute, still memory heavy, lower accuracy

2024/4/15 Chih-Chung Hsu@ACVlab 92

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

ResNet:
Moderate efficiency depending on model, highest accuracy

2024/4/15 Chih-Chung Hsu@ACVlab 93

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Forward pass time and power consumption

2024/4/15 Chih-Chung Hsu@ACVlab 94

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced withpermission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Lin et al Sanchez& Krizhevsky et al Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Network ensembling

2024/4/15 Chih-Chung Hsu@ACVlab 95

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,
Wide Resnet models

- ILSVRC’16 classification winner
- “Good Practices for Deep Feature Fusion”

Improving ResNets...

2024/4/15 Chih-Chung Hsu@ACVlab 96

Lin et al Sanchez&
Perronnin

Krizhevsky et al Zeiler&
(AlexNet) Fergus

Simonyan & Szegedy et al
Zisserman (VGG) (GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Adaptive feature map reweighting

2024/4/15 Chih-Chung Hsu@ACVlab 97

Improving ResNets...
Squeeze-and-Excitation Networks (SENet)

2024/4/15 Chih-Chung Hsu@ACVlab 98

[Hu et al. 2017]

- Add a “feature recalibration” module that
learns to adaptively reweight feature maps

- Global information (global avg. pooling
layer) + 2 FC layers used to determine
feature map weights

- ILSVRC’17 classification winner (using
ResNeXt-152 as a base architecture)

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 99

Lin et al Sanchez& Krizhevsky et al Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) winners

2024/4/15 Chih-Chung Hsu@ACVlab 100

152 layers 152 layers 152 layers

19 layers 22 layers

shallow 8 layers 8 layers

Lin et al Sanchez & Krizhevsky et al Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

Completion of the challenge:
Annual ImageNet competition no longer
held after 2017 -> now moved to Kaggle.

partial credit by CS311n

BUT RESEARCH INTO CNN
ARCHITECTURES IS STILL

FLOURISHING

4/15/2024 Chih-Chung Hsu@ACVlab 101

[Lin et al. 2014]

- Mlpconv layer with
“micronetwork” within each conv
layer to compute more abstract
features for local patches

- Micronetwork uses multilayer
perceptron

- Precursor to GoogLeNet and
ResNet “bottleneck” layers

- Philosophical inspiration for
GoogLeNet

Figures copyright Lin et al., 2014. Reproduced with permission.

Of historical note...
Network in Network (NiN)

2024/4/15 Chih-Chung Hsu@ACVlab 102

Identity Mappings in Deep Residual Networks

2024/4/15 Chih-Chung Hsu@ACVlab 103

[He et al. 2016]

- Improving ResNets...
- Improved ResNet block design from

creators of ResNet
- Creates a more direct path for

propagating information throughout
network (moves activation to residual
mapping pathway)

- Gives better performance

Wide Residual Networks

2024/4/15 Chih-Chung Hsu@ACVlab 104

- Argues that residuals are the
important factor, not depth

- User wider residual blocks (F x k
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms
152-layer original ResNet

- Increasing width instead of depth
more computationally efficient
(parallelizable)

[Zagoruyko et al. 2016]

Basic residual block Wide residual block

Neural Networks (ResNeXt)

2024/4/15 Chih-Chung Hsu@ACVlab 105

[Xie et al. 2016]

- Aggregated Residual
Transformations for
Deep

- Also from creators of
ResNet

- Increases width of
residual block through
multiple parallel
pathways (“cardinality”)

- Parallel pathways
similar in spirit to
Inception module

FractalNet: Ultra-Deep Neural Networks without Residuals

2024/4/15 Chih-Chung Hsu@ACVlab 106

[Larsson et al. 2017]

- Argues that key is transitioning
effectively from shallow to deep
and residual representations are
not necessary

- Fractal architecture with both
shallow and deep paths to output

- Trained with dropping out
sub-paths

- Full network at test time

Figures copyright Larsson et al., 2017. Reproduced with permission.

Densely Connected Convolutional Networks

2024/4/15 Chih-Chung Hsu@ACVlab 107

[Huang et al. 2017]

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

- Best paper in CVPR 2017!!

Dense Block: Densely Connected

2024/4/15 Chih-Chung Hsu@ACVlab 108

Densely connected layers:
Not Y = x + f(x) + f(f(x)) It is
just a special case of ResNet…

Y = [x, f(x)]!! Concatenation!

Dense Block

Why it is excellent?

 Feature reuse!!
 Multiscale feature representation
 Recall that: two 3x3 conv 5x5 conv, three 3x3 conv7x7 conv.

2024/4/15 Chih-Chung Hsu@ACVlab 109

3x3 3x3 3x3
3x3

x2 two 3x3
conv 5x5 conv x3 three 3x3

conv 7x7 conv

Problem in DenseNet (cont.)

Dense connection is performed in a dense block
 Same feature map size

 Pooling (by max-pooling or strided conv.) between two dense blocks

ResNet/DenseNet: Feature map reusing (large memory usage)

2024/4/15 Chih-Chung Hsu@ACVlab 110

DenseNet

2024/4/15 Chih-Chung Hsu@ACVlab 111

SKNet (Selective Kernel Convolution)

2024/4/15 Chih-Chung Hsu@ACVlab 112

[Li et al. 2019]

Similar to SENet
Get the channeled-features and use split-attention to automatically decide
which channel is important!

ResNeSt：Split-Attention Networks

2024/4/15 Chih-Chung Hsu@ACVlab 113

[Zhang et al. 2020]

ResNeSt：Split-Attention Networks

2024/4/15 Chih-Chung Hsu@ACVlab 114

[Zhang et al. 2020]

Combine different existing modules

• Multi-path module in Inception
• Different kernel sizes
• Group conv. is used.

• Feature map attention (SKNet)
• Channel attention (SENet)

Efficient networks...

2024/4/15 Chih-Chung Hsu@ACVlab 115

[Howard et al. 2017]
- Depthwise separable convolutions replace standard

convolutions by factorizing them into a depthwise
convolution and a 1x1 convolution that is much more
efficient

- Much more efficient, with little loss in accuracy
- Follow-up MobileNetV2 work in 2018 (Sandler et

al.)
- Other works in this space e.g. ShuffleNet (Zhang et al.

2017)
- Latest: EfficientNet-b7
- Latest: RegNet (Statics for search range, [He et.al.,

2020])

MobileNets: Efficient Convolutional Neural Networks for
Mobile Applications

Depth-wise separable Convolution

2024/4/15 Chih-Chung Hsu@ACVlab 116

[Howard et al. 2017]

Depth-wise conv.Standard conv. Point-wise conv.

SOTA for Image Recognition (2020)

2024/4/15 Chih-Chung Hsu@ACVlab 117

SOTA for Image Recognition (2021)

2024/4/15 Chih-Chung Hsu@ACVlab 118

• Meta pseudo label
• Self-supervised learning
• Trained on 2,048 TPUv3

cores…?????WT
• [Google 2021]

• DeepMine proposed
NFNet

• Without normalization!!
• Normalizer-Free

ResNet
• AGC (gradient clip) [2021]

• EfficientNet v2

Public Benchmark (2023) of ImageNet Validation Set

2024/4/15 Chih-Chung Hsu@ACVlab 119

AGC (Adaptive Gradient Clipping) for NFNet

2024/4/15 Chih-Chung Hsu@ACVlab 120

Other than SOTA CNNs

 Visual Transformer [ICLR 2021]!!
 A feed-forward network for visual information without CNNs
 Transformer: we talk it later

2024/4/15 Chih-Chung Hsu@ACVlab 121

What’s Different?

2024/4/15 Chih-Chung Hsu@ACVlab 122

Visual Transformer

 To make fully connected layer great again!!
 So, what’s attention?

2024/4/15 Chih-Chung Hsu@ACVlab 123

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑞𝑞: query (to match others)
𝑘𝑘: key (to be matched)
𝑣𝑣: information to be extracted

𝑎𝑎𝑖𝑖 = 𝑊𝑊𝑥𝑥𝑖𝑖

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑎𝑎𝑖𝑖

𝑘𝑘𝑖𝑖 = 𝑊𝑊𝑘𝑘𝑎𝑎𝑖𝑖

𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑎𝑎𝑖𝑖

https://arxiv.org/abs/1706.03762

Self-attention

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝛼𝛼1,1 𝛼𝛼1,2

Scaled Dot-Product Attention:

𝛼𝛼1,3 𝛼𝛼1,4

𝛼𝛼1,𝑖𝑖 = 𝑞𝑞1 � 𝑘𝑘𝑖𝑖/ 𝑑𝑑

dot product

d is the dim of 𝑞𝑞 and 𝑘𝑘

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Self-attention

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4Softmax

�𝛼𝛼1,𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒 𝛼𝛼1,𝑖𝑖 /�
𝑗𝑗
𝑒𝑒𝑥𝑥𝑒𝑒 𝛼𝛼1,𝑗𝑗

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Self-attention

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏1

Attention works on everywhere!! 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑖𝑖𝑣𝑣𝑖𝑖

Self-attention

ViT - Input Section

x ∈ ℝ𝑯𝑯×𝑾𝑾×𝑪𝑪

𝒙𝒙𝒑𝒑 ∈ ℝ𝑵𝑵×(𝑷𝑷𝟐𝟐⋅𝑪𝑪)

𝑵𝑵 = 𝑯𝑯𝑾𝑾/𝑷𝑷𝟐𝟐

ViT - Transformer Encoder

CLS token

Hybrid Architecture : Raw image patches --> Feature map of a CNN

A learnable embedding is added to the sequence of embedded patches
(𝑧𝑧00 = 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), where state at the output of the Transformer encoder (𝑧𝑧𝐿𝐿0)
serves as the image representation y (Eq. 4).

Layer-norm (LN) is applied before every block, and residual connections after
every block.

The MLP (Fully-connected layer) contains two layers with a GELU non-
linearity.

LN & GELU

GELULN

Experiments - Training

patch size

Previous SOTA (2021.4)

 Swin-Transformer V1 (vision)
 [MSRA, CVPR2021]

2024/4/15 Chih-Chung Hsu@ACVlab 132

arxiv.org/abs/2103.14030

Swin-Transformer V2: Swin Transformer V2: Scaling Up
Capacity and Resolution (CVPR 2022)

2024/4/15 Chih-Chung Hsu@ACVlab 133

partial credit by CS311n

TRANSFORMER BECOMES “SOTA”?

Not really.
Let’s see the truth!

2024/4/15 Chih-Chung Hsu@ACVlab 134

ImageNet-1K Classification Benchmark

partial credit by CS311n

A ROADMAP

From ResNet
to ConvNeXt

Training Techniques

More epochs: 90 -> 300

Optimizer: AdamW

Data augmentation: Mixup, Cutmix, Random Augment,
Random Erasing

Regularizations: Stochastic Depth, Label Smoothing

 ImageNet Top-1 acc: 76.1% -> 78.8%

Macro Design

Changing stage compute ratio / Changing stem to “Pachify”

ResNeXt-ify

Depth-wise Separable Convolution

ResNeXt-ify

Depth-wise Separable Convolution

Inverted Bottleneck / Large Kernel Size

RESNET
Block

Inverted Bottleneck / Large Kernel Size

Micro Design

RELU -> GELU

 Fewer activation

 Fewer norms

 Batch Norm -> Layer Norm

 Separate downsampling conv

 ImageNet Top-1 acc: 82.0%

Micro Design

 Layer Normalization
6.7 Convolutional Networks

We have also experimented with convolutional neural networks. In our
preliminary experiments, we observed that layer normalization offers a speedup
over the baseline model without normalization, but batch normalization
outperforms the other methods. With fully connected layers, all the hidden units
in a layer tend to make similar contributions to the final prediction and re-
centering and re-scaling the summed inputs to a layer works well. However, the
assumption of similar contributions is no longer true for convolutional neural
networks. The large number of the hidden units whose receptive fields lie near
the boundary of the image are rarely turned on and thus have very different
statistics from the rest of the hidden units within the same layer. We think further
research is needed to make layer normalization work well in ConvNets

https://arxiv.org/abs/1607.06450

https://arxiv.org/abs/1607.06450

Different ConvNeXt variants

ConvNeXt-T

ConvNeXt-S

ConvNeXt-B

ConvNeXt-L

ConvNeXt-XL

Channels (C) Blocks (B)

(96, 192, 384, 768) (3, 3, 9, 3)

(96, 192, 384, 768) (3, 3, 27, 3)

(128, 256, 512, 1024) (3, 3, 27, 3)

(192, 384, 768, 1536) (3, 3, 27, 3)

(256, 512, 1024, 2048) (3, 3, 27, 3)

Results

Results

Results

Results

Results

partial credit by CS311n

TRANSFORMER IS BACK…AGAIN

Masked Autoencoders Are Scalable Vision Learners
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick Facebook AI Research (FAIR)

2024/4/15 Chih-Chung Hsu@ACVlab 151

2

In a nutshell…

Masked Autoencoder (MAE)
 MAE are scalable self-supervised learners for computer vision
 Mask random patches of the input image and reconstruct the missing pixels

 Asymmetric Encoder-Decoder Architecture
 Visible subset of patches (without mask tokens) → Encoder
 Latent representation & Mask tokens →Decoder (lightweight)

 Masking high proportion of the input image, e.g., 75%, yields a non-trivial and meaningful
self-supervisory task

 Accelerate training (by 3× or more) and improves accuracy
 Learning high-capacity models that generalizes well

 Vanilla ViT-H [] achieves the best accuracy (87.8%) among methods that use only
ImageNet-1K data

 Transfer performance in downstream tasks outperforms supervised pre- training and
shows promising scaling behavior

[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv 2021.

Background

Masked Language Modeling
 Success of self-supervised pre-training in NLP

 Masked language modeling (e.g., BERT [])
 Autoregressive language modeling (e.g., GPT [])

 Method: remove a portion of the input sequence and learn to predict the missing
content

 These methods have been shown to scale excellently
 These pre-trained representations generalize well to various downstream tasks

3[2]
[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv 2021.

Background

 Autoencoder
 Encoder maps an input to a latent representation
 Decoder reconstructs the input
 E.g., PCA and k-means are autoencoders
 Denoising autoencoders (DAE) [1] are a class of autoencoders that corrupt an input signal and learn to

reconstruct the original, uncorrupted signal
 A series of methods can be thought of as a generalized DAE under different corruptions, e.g.,

masking pixels or removing color channels

 Masked Image Encoding
 DAE [1] presents masking as a noise type
 Convolution-based

 Context Encoder inpaints large missing regions
 Transformer-based

 iGPT operates on sequences of pixels and predicts unknown pixels
 The ViT studies masked patch prediction for self-supervised learning
 Most recently, BEiT proposes to predict discrete tokens

4[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv 2021.

5

Background

Self-supervised Learning
 Early self-supervised learning approaches often focused on different

pretext tasks for pre-training

 Contrastive learning has been popular, which models image similarity and
dissimilarity between two or more views

 Contrastive and related methods strongly depend on data augmentation

 Autoencoding pursues a conceptually different direction, and it exhibits
different behaviors

What makes masked autoencoding
different between vision and language?

 Architectural Gap
 Convolutions typically operate on regular grids
 It is not straightforward to integrate ‘indicators’ such as mask tokens or positional embeddings into convolutional

networks
 Solution: ViT [1]

 Information Density
 Language: human-generated signals, highly semantic, information-dense, Need sophisticated language

understanding to train a model to predict only a few missing words per sentence
 Images: natural signals, heavy spatial redundancy, A missing patch can be recovered from neighboring

patches with little high-level understanding of parts, objects, and scenes
 Solution: masking a very high portion of random patches
 This strategy largely reduces redundancy and creates a challenging self-supervisory task that requires holistic

understanding beyond low-level image statistics

 The Role of Autoencoder’s Decoder
 Language: decoder predicts missing words that contain rich semantic information
 Image: decoder reconstructs pixels, hence its output is of a lower semantic level than common recognition tasks
 Decoder design plays a key role in determining the semantic level of the learned latent representations

for images

Masked Autoencoder (MAE)

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 157

MAE architecture

Masked Autoencoder (MAE)

MAE: A Simple, Effective, and Scalable Self-supervised Learner
 MAE masks random patches from the input image and reconstructs the missing patches in

the pixel space
 Asymmetric encoder-decoder design

 Encoder operates only on the visible subset of patches (without mask tokens)
 (Lightweight) Decoder reconstructs the input from the latent representation along with mask tokens
 Shifting the mask tokens to the small decoder results in a large reduction in computation

 A very high masking ratio (e.g., 75%) can achieve a win-win scenario
 It optimizes accuracy while allowing the encoder to process only a small portion (e.g., 25%) of patches
 This can reduce overall pre-training time by 3 × or more and likewise reduce memory consumption,

enabling us to scale our MAE to large models easily
 With MAE pre-training,

 Vanilla ViT-H achieves 87.8% accuracy when fine-tuned on ImageNet-1K
 Transfer Learning on object detection, instance segmentation, semantic segmentation achieve better

results than its supervised pre-training counterparts
 Significant gains by scaling up models

 ImageNet validation images
 Masking ratio 80%
 No loss is computed on visible patches (i.e., Loss is only computed on

masked patches)

MAE Reconstruction

COCO validation images
 MAE trained on ImageNet

MAE Reconstruction

 ImageNet validation images
 MAE pre-trained with a

masking ratio 75%
 Applied on inputs with

higher masking ratios (75%,
85%, 95%)

MAE Reconstruction

Masked Autoencoder (MAE)

Masking
 Image is divided into regular non-overlapping patches
 Sample a subset of patches and mask (i.e., remove) the remaining ones
 High masking ratio (e.g., 75%)

MAE encoder
 Encoder is a ViT [] but applied only on visible, unmasked patches
 Encoder only operates on a small subset (e.g., 25%) of the full set
 Masked patches are removed; No mask tokens are used
 This allows us to train very large encoders with only a fraction of compute and

memory
MAE decoder

 The input to the MAE decoder is the full set of tokens consisting of encoded visible
patches and mask tokens

 Positional embeddings are added to all tokens in this full set
 MAE decoder is only used during pre-training to perform the image reconstruction task

(only the encoder is used to produce image representations for recognition)
 Decoder has <10% computation per token vs. the encoder

Masked Autoencoder (MAE)

Reconstruction Target
 MAE reconstructs the input by predicting the pixel values for each

masked patch
 Loss function computes the MSE between reconstructed and original

images in the pixel space
 Loss is only computed on masked patches, similar to BERT []
 masks random patches from the input image and reconstructs the missing

patches in the pixel space

Simple Implementation
1. Generate a token for every input patch
2. Randomly shuffle the list of tokens and remove the last portion of the list
3. After encoding, mask tokens are appended to the list of encoded patches,

and unshuffle the full list (inverting the random shuffle operation)
4. The decoder is applied to this full list (with positional embeddings added)

 Fine-tuning accuracy heavily depends on pre-training

ImageNet Experiments

 Experimental Settings
 Self-supervised pre-training on the ImageNet-1K training set →

 supervised training to evaluate the representation with
 End-to-end fine-tuning
 Linear probing (freeze backbone and only train linear layer)

 ViT-L trained from scratch vs. fine-tuned from MAE
 Backbone: ViT-L/16
 Scratch: 200 epochs vs. Fine-tuning: 50 epochs

ImageNet Experiments

Masking ratio
 BERT typical masking ratio: 15%

ImageNet Experiments: Ablations

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 166

ImageNet Experiments: Wall-clock time (w/wo mask)

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 167

ImageNet Experiments: Mask sampling strategies

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 168

ImageNet Experiments

Training Schedules
 Not observed saturation of linear probing accuracy even at 1600 epochs
 MoCo v3 saturates at 300 epochs for ViT-L

Comparisons with self-supervised methods

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 170

Comparisons with Previous Results

Comparisons with supervised pre-training

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 171

Partial Fine-tuning

MAE vs. MoCo v3 (w.r.t. # fine-tuned transformer blocks)

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 172

Transfer Learning Experiments

Object Detection and Segmentation

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 173

Transfer Learning Experiments

 Semantic Segmentation

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 174

Transfer Learning Experiments

 Pixels vs. Tokens

He, Kaiming, et al. "Masked autoencoders are scalable
vision learners." arXiv 2021. 175

partial credit by CS311n

HOW ABOUT CNN?

ConvNext v2 is back…again

2024/4/15 Chih-Chung Hsu@ACVlab 176

ConvNextV2

2024/4/15 Chih-Chung Hsu@ACVlab 177

arxiv.org/pdf/2301.00808v1.pdf

ConvNextV2

Combine with mask auto-encoder

2024/4/15 Chih-Chung Hsu@ACVlab 178

ConvNextV2

2024/4/15 Chih-Chung Hsu@ACVlab 179

GRN of ConvNextV2

2024/4/15 Chih-Chung Hsu@ACVlab 180

partial credit by CS311n

SO WHAT NOW?

New direction: masking learning and mode at scale

2024/4/15 Chih-Chung Hsu@ACVlab 181

EVA (v1)
Exploring the limits of masked visual representation learning at scale (CVPR23)

Toward Knowledge Distillation

 KD is a good way
 But not the only way

 EVA: Large-scale visual pre-training
model, contrastive learning

No tokenization & feature distillation,
longer contrastive learning

 Strong transferability &
generalization on downstream tasks

 Large-scale training & model scaling
key, complex mechanisms
unnecessary

 Focus on algorithm essence, not
technical details

2024/4/15 Chih-Chung Hsu@ACVlab 183

So what’s different?

 EVA: large-scale visual pre-training,
contrastive learning

 Teacher: CLIP, student: 1B-parameter ViT

Cosine similarity loss, 40% input patch
masked

 Introduces MIM idea, larger student model,
cosine similarity loss

 Strong transferability & generalization,
essence over technical details

2024/4/15 Chih-Chung Hsu@ACVlab 184

EVA02 – Upgraded!!

 EVA-02: upgraded version of EVA-01,
overall framework similar

 ViT architecture optimized: norm,
initialization, FFN, positional encoding

 Teacher model: EVA-01 instead of CLIP,
progressive training paradigm

 Training data: 40M images, up from 30M,
enriched visual patterns

 Parameters: 3B, down from 10B, yet
performance improved, parameter
efficiency optimized

 Five model sizes available, catering to
different application needs

2024/4/15 Chih-Chung Hsu@ACVlab 185

Summary: CNN Architectures

Many popular architectures available in model zoos

ResNet and SENet currently good defaults to use

Networks have gotten increasingly deep over time

Many other aspects of network architectures are also continuously being investigated
and improved

 Even more recent trend towards meta-learning/Few-shot learning

Next time: Object detection via deep learning

2024/4/15 Chih-Chung Hsu@ACVlab 186

	SOTA Convolutional Neural Network
	Last 2 lectures: Training neural networks
	One more thing: Transfer Learning
	One more thing: Transfer Learning
	Transfer Learning with CNNs
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	Transfer learning with CNNs is pervasive…
	Transfer learning with CNNs is pervasive…
	Transfer learning with CNNs is pervasive…
	Transfer learning with CNNs is pervasive…But recent results show it might not always be necessary!
	Takeaway for your projects and beyond:
	Today: CNN Architectures
	Review: LeNet-5
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet�[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Review: AlexNet
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	Case Study: AlexNet[Krizhevsky et al. 2012]
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ZFNet
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	VGGNet[Simonyan and Zisserman, 2014]
	VGGNet
	VGGNet
	VGGNet
	VGGNet
	(not counting biases)
	#Parameters (not counting biases)
	#Parameters (not counting biases)
	VGGNet
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet
	GoogLeNet
	Solution: “bottleneck” layers that use 1x1 convolutions to reduce feature depth�
	Reminder: 1x1 convolutions
	Reminder: 1x1 convolutions
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	GoogLeNet[Szegedy et al., 2014]
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ResNet[He et al., 2015]
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	Comparing complexity...
	Comparing complexity...
	VGG: Highest memory, most operations
	GoogLeNet: most efficient
	AlexNet:�Smaller compute, still memory heavy, lower accuracy
	ResNet:Moderate efficiency depending on model, highest accuracy
	Forward pass time and power consumption
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winnersNetwork ensembling
	Improving ResNets...
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winnersAdaptive feature map reweighting
	Improving ResNets...Squeeze-and-Excitation Networks (SENet)
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
	But research into CNN architectures is still flourishing
	Of historical note...Network in Network (NiN)
	Identity Mappings in Deep Residual Networks
	Wide Residual Networks
	Neural Networks (ResNeXt)
	FractalNet: Ultra-Deep Neural Networks without Residuals
	Densely Connected Convolutional Networks
	Dense Block: Densely Connected
	Dense Block
	Problem in DenseNet (cont.)
	DenseNet
	SKNet (Selective Kernel Convolution)
	ResNeSt：Split-Attention Networks
	ResNeSt：Split-Attention Networks
	Efficient networks...
	Depth-wise separable Convolution
	SOTA for Image Recognition (2020)
	SOTA for Image Recognition (2021)
	Public Benchmark (2023) of ImageNet Validation Set
	AGC (Adaptive Gradient Clipping) for NFNet
	Other than SOTA CNNs
	What’s Different?
	Visual Transformer
	Self-attention
	Self-attention
	Self-attention
	Self-attention
	ViT - Input Section
	ViT - Transformer Encoder
	LN & GELU
	Experiments - Training
	Previous SOTA (2021.4)
	Swin-Transformer V2: Swin Transformer V2: Scaling Up Capacity and Resolution (CVPR 2022)
	Transformer becomes “SOTA”?	
	ImageNet-1K Classification Benchmark
	A Roadmap
	Training Techniques
	Macro Design
	ResNeXt-ify
	ResNeXt-ify
	Inverted Bottleneck / Large Kernel Size
	Inverted Bottleneck / Large Kernel Size
	Micro Design
	Micro Design
	Different ConvNeXt variants
	Results
	Results
	Results
	Results
	Results
	Transformer is back…again
	In a nutshell…
	Background
	Background
	Background
	What makes masked autoencoding different between vision and language?	
	Masked Autoencoder (MAE)
	Masked Autoencoder (MAE)
	MAE Reconstruction
	MAE Reconstruction
	MAE Reconstruction
	Masked Autoencoder (MAE)
	Masked Autoencoder (MAE)
	ImageNet Experiments
	ImageNet Experiments
	ImageNet Experiments: Ablations
	ImageNet Experiments: Wall-clock time (w/wo mask)
	ImageNet Experiments: Mask sampling strategies
	ImageNet Experiments
	Comparisons with self-supervised methods
	Comparisons with Previous Results
	Partial Fine-tuning
	Transfer Learning Experiments
	Transfer Learning Experiments
	Transfer Learning Experiments
	How about CNN?
	ConvNextV2
	ConvNextV2
	ConvNextV2
	GRN of ConvNextV2
	So what now?
	EVA (v1)�Exploring the limits of masked visual representation learning at scale (CVPR23)
	Toward Knowledge Distillation
	So what’s different?
	EVA02 – Upgraded!!
	Summary: CNN Architectures

