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Last time: Activation Functions
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Good!!
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Last time: Weight Initialization
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Initialization too small:
Activations go to zero, gradients also zero,
Failed to learn

Initialization too big:
Activations saturate (for tanh),
Gradients zero, Failed to learn, 

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely
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Last time: Data Preprocessing
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Slide Credit cs231n

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Last Time: Batch Normalization
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[Ioffe and Szegedy, 2015]

Learnable scale and
shift parameters:

Output,
Shape is N x D

Learning = ,
= will recover the

identity function!
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And now we will offer you

 Improve your training error:
 Optimizers
 Learning rate schedules
 Data augmentation

 Improve your test error:
 Regularization
 Choosing Hyperparameters
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Optimization
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W_1

W_2
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Optimization: Problems with SGD
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What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problems with SGD
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What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization Issue: scaling

2024/3/18 ACVLab 10
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Feature Re-Scaling

2024/3/18 ACVLab 11

…
…

…
…

…
…

…
…

…
…

…… ……

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑟𝑟 𝑥𝑥𝑅𝑅

mean: 𝑚𝑚𝑖𝑖

standard 
deviation: 𝜎𝜎𝑖𝑖

𝑥𝑥𝑖𝑖𝑟𝑟 ←
𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑚𝑚𝑖𝑖

𝜎𝜎𝑖𝑖
The means of all dimensions are 0, 
and the variances are all 1 

For each 
dimension i:

𝑥𝑥11

𝑥𝑥21
𝑥𝑥12

𝑥𝑥22

In general, gradient descent converges much faster 
with feature scaling than without it.
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Optimization: Problems with SGD
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What if the loss
function has a
local minima or
saddle point?
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Optimization: Problems with SGD
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What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck
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Optimization: Problems with SGD
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What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Our gradients come from
minibatches so they can be noisy!

Optimization: Problems with SGD
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SGD + Momentum
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SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum
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SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum

2024/3/18 Chih-Chung Hsu@ACVLab 18

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+Momentum
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Velocity

actual step

Momentum update:

SGD+Momentum

2024/3/18 Chih-Chung Hsu@ACVLab 19

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Velocity

actual step

Momentum update:

Nesterov Momentum
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Gradient
Velocity

actual step

Nesterov Momentum

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum
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Gradient
Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

Annoying, usually we want
update in terms of

Change of variables
rearrange:



Slide Credit cs231n

Nesterov Momentum
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SGD

SGD+Momentum

Nesterov
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AdaGrad
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Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad
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Think about it: What happens withAdaGrad?
Progress along “steep” directions is damped;
progress along “flat” directions is accelerated
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AdaGrad

2024/3/18 Chih-Chung Hsu@ACVLab 25

Step size changing in long time?
Decays to zero
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RMSProp: “Leaky AdaGrad”
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AdaGrad

RMSProp

Tieleman and Hinton, 2012
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RMSProp
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SGD

SGD+Momentum

RMSProp
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Adam (almost)
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Kingma and Ba, “Adam: Amethod for stochastic optimization”, ICLR 2015
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Adam (almost)
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Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: Amethod for stochastic optimization”, ICLR 2015
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Adam (full form)
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Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: Amethod for stochastic optimization”, ICLR 2015
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Adam (full form)
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Kingma and Ba, “Adam: Amethod for stochastic optimization”, ICLR 2015

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!
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Adam

2024/3/18 Chih-Chung Hsu@ACVLab 32

SGD

SGD+Momentum

RMSProp

Adam
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Learning Rate!
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Q: Which one of these learning rates is 
best to use?

A: All of them! Start with large learning rate 
and decay over time
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Learning Rate Decay
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Reduce learning rate

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.
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Learning Rate Decay
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 Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 
0.1 after epochs 30, 60, and 90.

Cosine:

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsLoshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019
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Learning Rate Decay

2024/3/18 Chih-Chung Hsu@ACVLab 36

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding”, 2018

Step: Reduce learning rate at a few fixed points. 
E.g. for ResNets, multiply LR by 0.1 after 
epochs 30, 60, and 90.

Cosine:

Linear:

Inv sqrt: 

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs
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High initial learning rates can make loss
explode; linearly increasing learning rate
from 0 over the first ~5000 iterations can
prevent this

Empirical rule of thumb: If you increase the
batch size by N, also scale the initial
learning rate by N

Learning Rate Decay: Linear Warmup

2024/3/18 Chih-Chung Hsu@ACVLab 37

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv2017
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Lookahead Optimizer?

2024/3/18 Chih-Chung Hsu@ACVLab 38

Zhang, Michael R., et al. "Lookahead Optimizer: k steps forward, 1 step back." (2019).
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Now we have “advanced” ADAM 

 R-ADAM (Rectified Adam)

2024/3/18 Chih-Chung Hsu@ACVLab 39

Liu, Liyuan, et al. "On the variance of the adaptive learning rate and beyond." ICLR2020.
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RADAM

 SGD + Warmup

2024/3/18 Chih-Chung Hsu@ACVLab 40
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Combination (2020 late)

 The strongest optimizer + lookahead?
 Yes, we have RANGER

2024/3/18 Chih-Chung Hsu@ACVLab 41



INSIGNIFICANT IMPROVEMENT?
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First-Order Optimization

2024/3/18 Chih-Chung Hsu@ACVLab 43

Loss

w1
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First-Order Optimization
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w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation Loss
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Second-Order Optimization
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w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation Loss
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

2024/3/18 Chih-Chung Hsu@ACVLab 46

Why is this bad for deep learning?

Hessian has O(N2) elements.
Inverting takes O(N3)
N = (Tens or Hundreds of) Millions
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Second-Order Optimization

2024/3/18 Chih-Chung Hsu@ACVLab 47

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate inverse Hessian
with rank 1 updates over time (O(n^2) each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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L-BFGS

Usually works very well in full batch, deterministic mode

 i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely

Does not transfer very well to mini-batch setting. 
 Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an 

active area of research.

2024/3/18 Chih-Chung Hsu@ACVLab 48

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

 Adam is a good default choice in many cases; it often works ok even with constant 
learning rate

 BUT in practice, SGD+Momentum can outperform Adam but may require more 
tuning of LR and schedule
 Try cosine schedule, very few hyperparameters!

Generative models: Adam-like optimizers still show great performance!!

 If you can afford to do full batch updates then try out
 L-BFGS (and don’t forget to disable all sources of noise)

2024/3/18 Chih-Chung Hsu@ACVLab 49
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Beyond Training Error

2024/3/18 Chih-Chung Hsu@ACVLab 50

Better optimization algorithms
help reduce training loss

But we really care about error on
new data - how to reduce the gap?
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Early Stopping: Always do this

2024/3/18 Chih-Chung Hsu@ACVLab 51

Iteration

Loss

Iteration

Accuracy
Train
Val

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot
that worked best on val
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Model Ensembles

 Train multiple independent models

 At test time average their results
 (Take average of predicted probability distributions, then choose argmax)

2024/3/18 Chih-Chung Hsu@ACVLab 52

Enjoy 2% extra performance!!
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Model Ensembles: Tips and Tricks

2024/3/18 Chih-Chung Hsu@ACVLab 53

Instead of training independent models, use multiple snapshots of a single 
model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can
make this work even better!
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Instead of using actual parameter vector, keep a moving average of the 
parameter vector and use that at test time (Polyak averaging)
(or so-called network interpolation)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

Model Ensembles: Tips and Tricks

2024/3/18 Chih-Chung Hsu@ACVLab 54
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Regularization

How to improve single-model performance?

2024/3/18 Chih-Chung Hsu@ACVLab 55
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Regularization: Add term to loss

2024/3/18 Chih-Chung Hsu@ACVLab 56

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)



Slide Credit cs231n

Regularization: Dropout

2024/3/18 Chih-Chung Hsu@ACVLab 57

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR2014

In each forward pass, randomly set some neurons to zero Probability of 
dropping is a hyperparameter; 0.5 is common
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Example forward
pass with a
3-layer network
using dropout

Regularization: Dropout

2024/3/18 Chih-Chung Hsu@ACVLab 58
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Regularization: Dropout

2024/3/18 Chih-Chung Hsu@ACVLab 59

Forces the network to have a redundant representation;
Prevents co-adaptation of features

cat
score

X

X

has an ear

has a tail

is furry

has claws

mischievous X
look

How can this possibly be a good idea?
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Regularization: Dropout

2024/3/18 Chih-Chung Hsu@ACVLab 60

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

2024/3/18 Chih-Chung Hsu@ACVLab 61

Dropout makes our output random!
Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

But this integral seems hard …



Slide Credit cs231n

During training we have:

Dropout: Test time

2024/3/18 Chih-Chung Hsu@ACVLab 62

a

x y

w1 w2

Consider a single neuron

Want to approximate 
the integral

At test time we have:

At test time, multiply
by dropout probability
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Dropout

Why the weights should multiply (1-p)% (dropout rate) when testing?

2024/3/18 Chih-Chung Hsu@ACVLab 63

Training of Dropout Testing of Dropout

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4

𝑧𝑧

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4

𝑧𝑧′

Assume dropout rate is 50%

0.5 ×
0.5 ×
0.5 ×
0.5 ×

No dropout
Weights from training

𝑧𝑧′ ≈ 2𝑧𝑧

𝑧𝑧′ ≈ 𝑧𝑧
Weights multiply (1-p)%
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Dropout: Test time

2024/3/18 Chih-Chung Hsu@ACVLab 64

At test time all neurons are active always
=> We must scale the activations so that for each neuron:

output at test time = expected output at training time
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drop in forward pass

scale at test time

2024/3/18 Chih-Chung Hsu@ACVLab 65
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test time is unchanged!

More common: “Inverted dropout”
2024/3/18 Chih-Chung Hsu@ACVLab 66
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Regularization: A common pattern

2024/3/18 Chih-Chung Hsu@ACVLab 67

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch 
Normalization

Training: Normalize 
using stats from
random minibatches

Testing: Use fixed 
stats to normalize
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Load image
and label

“cat”

Compute
loss

CNN

Regularization: Data Augmentation

2024/3/18 Chih-Chung Hsu@ACVLab 68

This image by Nikita is
licensed under CC-BY2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Slide Credit cs231n

Regularization: Data Augmentation

2024/3/18 Chih-Chung Hsu@ACVLab 69

Load image
and label

“cat”

Compute
loss

CNN

Transform image
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Data Augmentation: Horizontal Flips

2024/3/18 Chih-Chung Hsu@ACVLab 70
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Data Augmentation

 Random crops and scales

 Training: sample random crops / scales
 ResNet:

 Pick random L in range [256, 480]
 Resize training image, short side = L
 Sample random 224 x 224 patch

 Testing: average a fixed set of crops
 ResNet:

 Resize image at 5 scales: {224, 256, 384, 480, 640}
 For each size, use 10 224 x 224 crops: 4 corners + center, + flips

2024/3/18 Chih-Chung Hsu@ACVLab 71
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Data Augmentation: Color Jitter

2024/3/18 Chih-Chung Hsu@ACVLab 72

Simple: Randomize
contrast and brightness

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” along 
principal component 
directions

3. Add offset to all pixels of a 
training image

More Complex way:

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation

Get creative for your problem!

 Random mix/combinations of :
 translation
 rotation
 stretching
 shearing,
 lens distortions, …

2024/3/18 Chih-Chung Hsu@ACVLab 73
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Regularization: A common pattern

 Training: Add random noise

 Testing: Marginalize over the noise

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation

2024/3/18 Chih-Chung Hsu@ACVLab 74
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Regularization: DropConnect

 Training: Drop connections between neurons (set weights to 0)

 Testing: Use all the connections

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect

2024/3/18 Chih-Chung Hsu@ACVLab 75

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: Fractional Pooling

 Training: Use randomized pooling regions

 Testing: Average predictions from several regions

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect
 Fractional Max Pooling

2024/3/18 Chih-Chung Hsu@ACVLab 76

Graham, “Fractional Max Pooling”, arXiv2014
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Regularization: Stochastic Depth

 Training: Skip some layers in the network

 Testing: Use all the layer

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect
 Fractional Max Pooling 
 Stochastic Depth

2024/3/18 Chih-Chung Hsu@ACVLab 77

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Regularization: Cutout

 Training: Set random image regions to zero

 Testing: Use full image

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect
 Fractional Max Pooling 
 Stochastic Depth 
 Cutout

2024/3/18 Chih-Chung Hsu@ACVLab 78

DeVries and Taylor, “Improved Regularization of
Convolutional Neural Networks with Cutout”, arXiv2017

Works very well for small datasets like CIFAR,
less common for large datasets like ImageNet
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Regularization: Mixup

 Training: Train on random blends of images

 Testing: Use original images

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect
 Fractional Max Pooling
 Stochastic Depth 
 Cutout
 Mixup

2024/3/18 Chih-Chung Hsu@ACVLab 79
Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of 
pairs of training images,
e.g. 40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6
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Regularization: Mixup

 Training: Train on random blends of images

 Testing: Use original images

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect
 Fractional Max Pooling
 Stochastic Depth 
 Cutout
 Mixup
 CutMix

2024/3/18 Chih-Chung Hsu@ACVLab 80

Yun, Sangdoo, et al. "Cutmix: Regularization strategy to train strong classifiers with localizable features." ICCV 2019
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Regularization

 Training: Add random noise

 Testing: Marginalize over the noise

 Examples:
 Dropout
 Batch Normalization 
 Data Augmentation 
 DropConnect
 Fractional Max Pooling 
 Stochastic Depth 
 Cutout
 Mixup
 CutMix

2024/3/18 Chih-Chung Hsu@ACVLab 81

- Consider dropout for large
fully-connected layers

- Batch normalization and data
augmentation almost always a
good idea

- Try cutout and mixup especially
for small classification datasets



CHOOSING HYPERPARAMETERS

(without tons of GPUs)
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Choosing Hyperparameters

 Step 1: Check initial loss

 Turn off weight decay, sanity check loss at initialization

 e.g. log(C) for softmax with C classes

2024/3/18 Chih-Chung Hsu@ACVLab 83
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Choosing Hyperparameters

 Step 1: Check initial loss

 Step 2: Overfit a small sample

 Try to train to 100% training accuracy on a small sample of training data
 #minibatches < 10
 Tuning your architecture, learning rate, weight initialization

 Loss not going down? LR too low, bad initialization

 Loss explodes to Inf or NaN? LR too high, bad initialization

2024/3/18 Chih-Chung Hsu@ACVLab 84
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Choosing Hyperparameters

 Step 1: Check initial loss

 Step 2: Overfit a small sample

 Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small 
weight decay, find a learning rate that makes the loss drop significantly within 
~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

2024/3/18 Chih-Chung Hsu@ACVLab 85
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Choosing Hyperparameters

 Step 1: Check initial loss

 Step 2: Overfit a small sample

 Step 3: Find LR that makes loss go down

 Step 4: Coarse grid, train for ~1-5 epochs

 Choose a few values of learning rate and weight decay around what worked from 
Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 1e-6, even 0

2024/3/18 Chih-Chung Hsu@ACVLab 86
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Choosing Hyperparameters

 Step 1: Check initial loss

 Step 2: Overfit a small sample

 Step 3: Find LR that makes loss go down 

 Step 4: Coarse grid, train for ~1-5 epochs 

 Step 5: Refine grid, train longer

 Pick best models from Step 4, train them for longer (~10-20 epochs) without 
learning rate decay

2024/3/18 Chih-Chung Hsu@ACVLab 87
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Choosing Hyperparameters

 Step 1: Check initial loss

 Step 2: Overfit a small sample

 Step 3: Find LR that makes loss go down 

 Step 4: Coarse grid, train for ~1-5 epochs 

 Step 5: Refine grid, train longer

 Step 6: Look at loss curves

2024/3/18 Chih-Chung Hsu@ACVLab 88
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Losses may be noisy, use a scatter plot and also plot
moving average to see trends better

Look at learning curves!
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Training Loss Train / ValAccuracy



Loss

time

Bad initialization a prime suspect
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Loss

time

Loss plateaus: Try
learning rate decay
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Loss

time

Learning rate step decay Loss was still going down
when learning rate dropped,
you decayed too early!



Accuracy

time

Train

2024/3/18 Chih-Chung Hsu@ACVLab 93

Val

Accuracy still going up, you need to train longer



Accuracy

time

Train

Val

Huge train / val gap means overfitting! Increase 
regularization, get more data
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Accuracy

time

Train

Val

No gap between train / val means underfitting: train 
longer, use a bigger model
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Choosing Hyperparameters

 Step 1: Check initial loss

 Step 2: Overfit a small sample

 Step 3: Find LR that makes loss go down 

 Step 4: Coarse grid, train for ~1-5 epochs 

 Step 5: Refine grid, train longer

 Step 6: Look at loss curves

 Step 7: GOTO step 5
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Hyperparameters to play with

Network architecture

 Learning rate, its decay schedule, update type

 Regularization (L2/Dropout strength)
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Cross-validation
“command center”



Slide Credit cs231n

Important Parameter Important Parameter
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Illustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017

Random Search vs. Grid Search

 Random Search for
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Grid Layout Random Layout

Hyper-Parameter Optimization Bergstra and Bengio, 2012
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Track the ratio of weight updates / weight magnitudes:
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ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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Summary

 Improve your training error:
 Optimizers
 Learning rate schedules

 Improve your test error:
 Regularization
 Choosing Hyperparameters
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NEXT: HOW TO BUILD THE CNN WITH 
TF/PYTORCH?
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