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Recap: Computational graphs

f

Wz

Li =3, max(0,s; —

Sy, +1)

@ (scores)
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Recap: Neural Networks

Linear score function: f — ”/ i

2-layer Neural Network f - W2 1']:1‘?:35‘,{(()TJ ngj)

x| W1 |[h| W2 |sg

07 100 10

plane car bird cat deer dog frog horse ship truck
[
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Recap: Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsampllng

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

2024/3/18 ACVLab 4



Recap: Convolutional Layer

activation map

__— 32x32x3 image

5x5x3 filter
E
@>@ &

convolve (slide) over all
spatial locations

32 28

2024/3/18 ACVLab



Recap: Convolutional Layer

activation maps

For example, if we had 6 5x5 filters, we’ll get 6 separate
activation maps

32

28

Convolution Layer

o2 28

LN NN NN

3 6
We stack these up to get a “new image” of size 28x28x6!

2024/3/18 ACVLab



Recap: Learning network parameters through optimization

while True:

weights grad = evaluate gradient(loss_ fun, data, weights)
Landscapeimageis CCO 1.0 public domain weights += - step size * weights grad # perform parameter update
Walkingman image is CC0 1.0 publicdomain

2024/3/18 ACVLab


http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&amp;picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Recap: Mini-batch SGD

= Loop:

= Sample a batch of data

= Forward prop it through the graph (network), get loss
= Backprop to calculate the gradients

= Update the parameters using the gradient

2024/3/18 ACVLab



Overview

= One time setup
= activation functions, preprocessing, weight initialization, regularization, gradient
checking
= Training dynamics
= babysitting the learning process,
= parameter updates, hyperparameter optimization

= Evaluation
= model ensembles, test-time augmentation

2024/3/18 ACVLab



Part 1

= Activation Functions

= Data Preprocessing

= Weight Initialization

= Batch Normalization

= Babysitting the Learning Process
» Hyperparameter Optimization

2024/3/18 ACVLab
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ACTIVATION FUNCTIONS




Activation Functions

L wo

*@ synapse
axon from a neuron

cell body

il (Zw@mﬁrb)
Zwimi +b f 1

output axon

activation
function

w1

¥

2024/3/18 ACVLab 12



Activation Functions

tanh
tanh(x)

RelLU
max (0, x)

2024/3/18

Sigmoid |
o(x) = 1+i—m 0
_

Leaky RelLU
max(0.1z, x)

Maxout
max(w{ = + by, wi x + by)

ELU

T T U
ae® —1) =<0

ACVLab
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Activation Functions

Squashes numbers to range [0,1]

Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

problems:

P

-10 . 1. Saturated neurons “kill" the

gradients

Sigmoid
o(z) =1/(1+e77)

2024/3/18 ACVLab 14



sigmoid gate

X |60 a(m)zl/(He‘i)
3 -
9L 9o OL]\ oL
dx  Or Oo oo T

What happens when x =-107?
What happens when x = 0?
What happens when x =107

2024/3/18 ACVLab
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Activation Functions

P

Sigmoid
o(x) =1/(1+e7%)

2024/3/18

Squashes numbers to range [0,1]

Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

problems:

1. Saturated neurons “kill” the
gradients
2. Sigmoid outputs are not zero-centered

ACVLab 16



Activation Functions

P

Sigmoid
o(x) =1/(1+e7%)

2024/3/18

Squashes numbers to range [0,1]

Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

ACVLab 17



Consider what happens when the input to a neuron is
always positive...

Zo Wy
@
axon from a neuron gynapse
. W

output axon

activation
function

What can we say about the gradients on w?

2024/3/18 ACVLab 18



Consider what happens when the input to a neuron is

always positive...

f Z’wz‘xi + b

What can we say about the gradients on w?

Always all positive or all negative :(
(For a single element! Minibatches help)

2024/3/18 ACVLab

allowed
gradient
update
directions
, [
zig zag path
allowed
gradient
update
directions
hypothetical
optimal w
vector
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Activation Functions

1

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

—i) 10

tanh(x)

[LeCun et al., 1991]

2024/3/18 ACVLab 20



Activation Functions

10;

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

v

-10 10
Computes f(x) = max(0,x)

RelLU

(Rectified Linear Unit) _
[Krizhevsky et al., 2012]

2024/3/18 ACVLab 21



Activation Functions

10;

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

-10 Y 10

- Not zero-centered output
Computes f(x) = max(0,x) - An annoyance:

RelLU
(Rectified Linear Unit)

hint: what is the gradient when x <07?
[Krizhevsky et al., 2012]

2024/3/18 ACVLab 22



X 55| RelU o(x) = max(0, x)

_d
% gate -«

8L 0o 0L oL

10+

dxr Oz Ho oo ~T0

What happens when x =-107?
What happens when x = 07?
What happens when x =107

2024/3/18 ACVLab
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active ReLU %/\/ Dg
> DATA CLOUD

dead RelLU
will never activate
=> never update

2024/3/18 ACVLab 24



Activation Functions

10,

Leaky RelL U

f(z) = max(0.01z, x)

[Mass et al., 2013]

2024/3/18

[He et al., 2015]

Does not saturate
Computationally efficient

Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

will not “die”.
Parametric Rectifier (PReLU)

fle) = max{owx; )

backprop into \alpha (parameter)

ACVLab 25



Activation Functions

10,

ol = {1‘: if #5100

a(exp(z) —1) ifz <0
Exponential Linear Units (ELU)

2024/3/18

ACVLab

All benefits of ReLU

Closer to zero mean outputs
Negative saturation regime
compared with Leaky Rel.U
adds some robustness to noise

Computation requires exp()

[Clevert et al., 2015]

26



Maxout “Neuron”

- Does not have the basic form of dot product -> nonlinearity
- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w] z + by, w; x + by)

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

2024/3/18 ACVLab 27



TLDR: In practice:

= Use RelLU. Be careful with your learning rates
= Tryout Leaky ReLU / Maxout / ELU
= Try out tanh but don’t expect much

= Don’t use sigmoid

2024/3/18 ACVLab
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SOTA Activation Function so far

—sigmoid
—RelU ' '
—softplus

Figure 1. Mish Activation Function -5 0 5

f(x) =xtanh(softplus(x)) = xtanh(In(1 +¢")) f(g;) = - SlngId(B.T)

MISH SWISH

2024/3/18 ACVLab 29



SOTA Activation Function so far

GELU(z) = 0.5z (1 + tanh ({/2/n(z + 0.0447152%) ) )

GELU

2024/3/18 ACVLab
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Identity | Sigmoid

RandomizedRelU =~ =~ ParametericRelU

Exponentional Linear Unit | Soft Sign | Inverse Square Root Unit (ISRU)

Inverse Square Root Linear I i i Bipolar Relll Soft Plus

Source:https://mlfromscratch.com/activation-functions-explained/#,




DATA PREPROCESSING




Data Preprocessing

original data zero-centered data normalized data

1

-10 =10

1g =10 -5 0 3 13 -10 -5 ] 5

X -= np.mean(X, axis = 0) . X /= np.std(X, axis

(Assume X [NxD] is data matrix, each example in a row)

2024/3/18 ACVLab
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Remember: Consider what happens when

allowed
gradient
update
directions
. zig zag path
[ allowed J ap
gradient
the input to a neuron is always positive... update
directions
What can we say about the gradients on w? .
hypothetical

Always all positive or all negative :( optimal w
(this is also why you want zero-mean data!) vector

2024/3/18 ACVLab 34



Data Preprocessing

original data zero-centered data normalized data

1

-10 =10

1g =10 -5 0 3 13 -10 -5 ] 5

X -= np.mean(X, axis = 0) . X /= np.std(X, axis

(Assume X [NxD] is data matrix, each example in a row)

2024/3/18 ACVLab
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Data Preprocessing

original data zero-centered data normalized data

1

0 - - 0
=5 -5 i
Y
- 5 pis 4T =3 0 5 15 D) =3 ] 5 10
(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

In practice, you may also see PCA and Whitening of the data

2024/3/18 ACVLab 36



Data Preprocessing

Before normalization: classification loss
very sensitive to changes in weight matrix;

hard to optimize

2024/3/18

> P>

After normalization: less sensitive to small
changes in weights; easier to optimize

ACVLab 37



In practice for Images: center only

= .g. consider CIFAR-10 example with [32,32,3] images
= Subtract the mean image (e.g. AlexNet) (meanimage = [32,32,3] array)
= Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)

= Subtract per-channel mean and Divide by per-channel std (e.g. ResNet) (mean
along each channel = 3 numbers)

= Not common to do PCA or whitening

2024/3/18 ACVLab 38



WEIGHT INITIALIZATION




Q: what happens when W=constant init is used?

input layer
hidden layer

2024/3/18



First idea: Small random numbers

W= 0.01 * np.random.randn(Din, Dout)

(gaussian with zero mean and le-2 standard deviation)

2024/3/18 ACVLab
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First idea: Small random numbers

W= 0.01 * np.random.randn(Din, Dout)

(gaussian with zero mean and le-2 standard deviation)

Works ~okay for small networks, but problems with
deeper networks.

2024/3/18 ACVLab
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Weight Initialization: Activation statistics

2024/3/18

dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

W 0.01 * np.random.randn(Din, Dout)
X np.tanh(x.dot(W))
hs.append(x)

ACVLab

43



Weight Initialization: Activation statistics

dims = [4096] * 7  Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): Q: What do the gradients
W= 0.01 * np.random.randn(Din, Dout) ika?
BN e dL/dW look like"

R APDONC(X) A: All zero, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial
hs = [] weights from 0.01 to 0.05

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

W 0.05 * np.random.randn(Din, Dout)

X np.tanh(x.dot (W))
hs.append(x)

2024/3/18 ACVLab
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05
X = np.random.randn(16, dims[0]) Q: What do the gradients

for Din, Dout in zip(dims[:-1], dims[1l:]): look like?
W= 0.05 * nP.random.randn(Din, Dout)
X = np.tanh(x.dot(W)) A: Local gradients all

F - APRERA{X) zero, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

=1 V] 1 =1 0 1 =1 0 1 -1 0 1 =1 0 1 =1 0 1
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right™: Activationsare
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)

For conv layers, Din is

X = np.tanh(x.dot(W)) kernel_size2 . input_channels

hs.append (x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

=1 0 1 =1 0 1 =1 0 1 | 0 1 =1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

=1 0 1
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activationsare
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!
X = np.random.randn(16, dims[0])

for Din, Dout in zio(dimsl:-11, dimsf1:1):

For conv layers, Din is

W = np.random.randn(Din, Dout) / np.sgrt(Din) _ _
X = np.tanh(x.dot(W)) kernel_size? * input_channels
hs.append (x)
Derivation:
y = Wx Var(y,) = Di.n * Var(xw;) [Assume X, w are iid]
h = f(y) = Din * (E[x2]E[w?] - E[x]? E[w]?) [Assume x, w independant]
= Din * Var(x,) * Var(w,) [Assume X, w are zero-mean]

If Var(w,) = 1/Din then Var(y,) = Var(x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010
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Weight Initialization: What about ReLU?

dims = [4096] * 7 Change from tanh to ReLU Xavier assur.nes.zero .
hs = [] centered activation function

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):
W_= np.random.randn(Din, Dout) / np.sqrt(Din) Activations Collapse to zero

X = np.maximum(0, x.dot(W)) . . _
Feeoeed T again, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
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Weight Initialization: Kaiming / MSRA Initialization

Jims 177°1 T 7 RelU correction: std = sqrt(2 /Din) “Just right”: Activations are

¥ = ni. randon. candn(16, dins[0]) nicely scaled for all layers!
for Din, Dout in zip(dims[:-1 dims[1:1):
W = np.random.randn(Din, Dout) * np.sqrt(2/Din)
X = np.maximum(0, x.dot(W))

hs.append (x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

=1 0 1 =1 0 1 =1 0 1 =1 0 1 =1 0 1 =1 H] 1

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015
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Proper initialization is an active area of research...

» Understanding the difficulty of training deep feedforward neural networks

» by Glorot and Bengio, 2010
» Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
» Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

» Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

= Data-dependent InitiaOlizations of Convolutional Neural Networks by Krahenbhl et al., 2015

» All you need is a good init, Mishkin and Matas, 2015

» Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

» The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

» Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415
(2016).

2024/3/18 ACVLab 51



BATCH NORMALIZATION




Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

~(F) _ (k) _ E[m(k)}
\/ Var[z(¥)]

[loffe and Szegedy, 2015]
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Batch Normalization

Input: : N x D 1
oy = == Z Ly j Per-channel mean,
N ¢4 ’ shape is D
A AA i=1
1 N
2 __ Z 2 Per-channel var
g5 = — Ti i — i y
N X J N 4 1( o NJJ) shape is D
1=
. :U. e .
.= b Hi Normalized X,

Lij =
vvy ,/032.4_5 Shapeis N xD

D Problem: What if zero-mean, unit
[loffe and Szegedy, 2015] variance is too hard of a constraint?
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= Estimates depend on minibatch; can’t do
Batch Normalization this at test-time!

Input: Z : N x ) _ Running) average of values Per-chgnnel mean,
seen during training shape is D

Learnable scale and shift

parameters: Running) average of values | Per-channelvar,
' seen during training shape is D
A, 3 5 1D

During testing batchnorm Normalized x,

: Shapeis NxD
becomes a linear operator!
Can be fused with the previous Outout
_ utput,
fully-connected or conv layer Shape is N x D

[loffe and Szegedy, 2015]
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Batch Normalization

: Make different features
Feature Scallng have the same scaling

W
i (e JE —a 1,2.... —
w.
100, 200....... b 1,2 i b
w, Loss L w, Loss L
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Slide Credit cs231n

Feature Scaling

For each
dimension i:

mean: m;

standard
deviation: g;

In general, gradient descent converges much faster

09431 with feature scaling than without it.
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Batch Normalization

58
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Batch normalization

i

u and o
depends on z

2024/3/18

%i(zi — 1?2

i=1

Note: Batch normalization
cannot be applied on
small batch.
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Batch normalization

p and o

depends on z*
2024/3/18

How to do
backpropogation?
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Batch normalization

p and o

depends on z*
2024/3/18
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Batch normalization

= At testing stage:

. Z—U
== == 2t =y + B
g 7
i, o are ¥, B are network
from batch parameters
We do not have batch at testing stage. Acc |
|deal solution:
U300
Computing u and ¢ using the whole training dataset. H100
H1
Practical solution: .
Computing the moving average of u and o of the Updates

batches during training.

2024/3/18 ACVLab
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Batch normalization - Benefit

= BN reduces training times, and make very deep net trainable.

= Because of less Covariate Shift, we can use larger learning rates.

= Less exploding/vanishing gradients
= Especially effective for sigmoid, tanh, etc.

= Learning is less affected by initialization.

= BN reduces the demand for regularization.

2024/3/18 ACVLab
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Batch Normalization for ConvNets

Batch Normalization for
fully-connected networks

Xx: N x D
Normalize i
H,0: 1 x D
X' B 1 P
y = Y(x-p)/o+p

2024/3/18

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

X: NxCxHxW
Normalize i i i
H,0: 1xCx1xl
Y,B: 1xCx1lx1l
y = Y(x-u)/o+p

ACVLab 64



[loffe and Szegedy, 2015]
Batch Normalization

FC Usually inserted after Fully
N ___ Connected or Convolutional layers,

1 and before nonlinearity.
tanh

FC

BN (k) _ z\*) — E[m(k)]
: \/ Var[z(¥)]

tanh
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[loffe and Szegedy, 2015]
Batch Normalization

FlC - Makes deep networks much easier to train!
BN - Improves gradient flow

] - Allows higher learning rates, faster convergence
tanh - Networks become more robust to initialization

- Acts as regularization during training

FC - Zero overhead at test-time: can be fused with conv!

l - Behaves differently during training and testing: this
BlN is a very common source of bugs!
tanh

2024/3/18 ACVLab 66



Layer Normalization

Layer Normalization for

Batch Normalization for fully-connected networks
fully-connected networks Same behavior at train and test!
Can be used in recurrent networks
X: N x D X: N x D
Normalize ¢ Normalize ¢
H,0: 1 x D H,0: N x 1
Y,p: 1 x D Y,B: 1 x D

y = Y(x-u)/o+B y = Y(x-u)/o+B

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

Batch Normalization for
convolutional networks

X: NXCxHXW

Normalize | L

H,0: 1xCx1x1

Instance Normalization for
convolutional networks
Same behavior at train / test!

Y,B: 1xCx1lx1

y = Y(x-u)/o+p

X: NxCxHxW
Normalize i ‘
H,0: NxCx1x1l

Y,P: 1IxCx1lxl
y = Y(x-p)/o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

2024/3/18
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H, W

Ld L

AN VA
ROV W

Ly g L

o e

Si={k| ke =ic}, Si={k|kn =in}, Si ={k|kn =in,kc =ic}

Wu and He, “Group Normalization”, ECCV 2018

2024/3/18 ACVLab
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Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H, W

LT T L LT

L o L

AN VAN

LT W
AV RN

|1
|1
L
L
| —1
|~

8= ke =ic) bt SR i =i ()

Wu and He, “Group Normalization”, ECCV 2018
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Summary

» We looked in detall at:

= Activation Functions (use RelLU)

= Data Preprocessing (images: Algorithm 1 SGD with spectral normalization

SUbtraCt mea n) e Initialize @; € R% forl =1,... . L with a random vector (sampled from isotropic distri-
. Ce . . bution).
u Welg ht Initialization (use ¢ For each update and each layer {:
Xavier/H ein |t) 1. Apply power iteration method to a unnormalized weight W'

o — (WHTa /(W a|

= Batch Normalization (use) i Wioy/[Wia
I i Iz

. Advanced: 2. Calculate Wgy with the spectral norm:
- )
= Spectral normalization! Wi (W) = W o (W), where o (W) = &7 W,
Avoid the gradient vary
significantly! 3. Update W' with SGD on mini-batch dataset D, with a learning rate o:

W W — aVy (Wi (W), Dyy)

(20)
2

(22)

(23)
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Next: How to train NN effectively and efficiently?

= Parameter update schemes

= Learning rate schedules

= Gradient checking

= Regularization (Dropout etc.)

= Learning scheduler

» Hyperparameter setting/search
= Evaluation (Ensembles etc.)

= Transfer learning / fine-tuning

2024/3/18 ACVLab
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