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Recap: Neural Networks
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Linear score function:

2-layer Neural Network
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture1

4

Recap: Convolutional Neural Networks
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Recap: Convolutional Layer
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32x32x3 image  
5x5x3 filter
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convolve (slide) over all  
spatial locations
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Recap: Convolutional Layer

2024/3/18 ACVLab 6

32

32

3

Convolution Layer

6

28

28

For example, if we had 6 5x5 filters, we’ll  get 6 separate 
activation maps

We stack these up to get a “new image” of size 28x28x6!
9

activation maps
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Landscape image is CC0 1.0 public domain  
Walking man image is CC0 1.0 public domain

Recap: Learning network parameters through optimization

2024/3/18 ACVLab 77

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&amp;picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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8

Recap: Mini-batch SGD

 Loop:

 Sample a batch of data

 Forward prop it through the graph  (network), get loss

 Backprop to calculate the gradients

Update the parameters using the gradient

2024/3/18 ACVLab 8
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Overview

One time setup
 activation functions, preprocessing, weight  initialization, regularization, gradient 

checking

 Training dynamics
 babysitting the learning process,
 parameter updates, hyperparameter optimization

 Evaluation
 model ensembles, test-time augmentation

2024/3/18 ACVLab 9
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Part 1

 Activation Functions

Data Preprocessing

Weight Initialization

 Batch Normalization

 Babysitting the Learning Process

Hyperparameter Optimization

2024/3/18 ACVLab 10



ACTIVATION FUNCTIONS
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Activation Functions
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Activation Functions
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

2024/3/18 ACVLab 14

Sigmoid
1. Saturated neurons “kill” the  

gradients

Squashes numbers to range [0,1]
Historically popular since they  have 
nice interpretation as a  saturating 
“firing rate” of a neuron

problems:
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sigmoid  gate

2024/3/18 ACVLab 15

x

What happens when x = -10?  
What happens when x = 0?
What happens when x = 10?
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Activation Functions
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Sigmoid
1. Saturated neurons “kill” the  

gradients
2. Sigmoid outputs are not  zero-centered

Squashes numbers to range [0,1]
Historically popular since they  have 
nice interpretation as a  saturating 
“firing rate” of a neuron

problems:
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Activation Functions

2024/3/18 ACVLab 17

Sigmoid
1. Saturated neurons “kill” the  

gradients
2. Sigmoid outputs are not  zero-centered
3. exp() is a bit compute expensive

Squashes numbers to range [0,1]
Historically popular since they  have 
nice interpretation as a  saturating 
“firing rate” of a neuron

problems:
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Consider what happens when the input to a neuron is  
always positive...

2024/3/18 ACVLab 18

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is  
always positive...

2024/3/18 ACVLab 19

What can we say about the gradients on w?  
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical  
optimal w  
vector

zig zag path

allowed  
gradient  
update  
directions

allowed  
gradient  
update  
directions
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Activation Functions

2024/3/18 ACVLab 20

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions

2024/3/18 ACVLab 21

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Computes f(x) = max(0,x)
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Activation Functions

2024/3/18 ACVLab 22

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Computes f(x) = max(0,x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?



ReLU
gate

x

What happens when x = -10?  
What happens when x = 0?
What happens when x = 10?
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DATA CLOUD

dead ReLU
will never activate
=> never update

active ReLU

=> people like to initialize  
ReLU neurons with slightly  
positive biases (e.g. 0.01)

2024/3/18 ACVLab 24
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Activation Functions

2024/3/18 ACVLab 25

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]  [He et al., 2015] backprop into \alpha  (parameter)

Parametric Rectifier (PReLU)
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Activation Functions

2024/3/18 ACVLab 26

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime  

compared with Leaky ReLU  
adds some robustness to noise

- Computation requires exp()

[Clevert et al., 2015]Exponential Linear Units (ELU)
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Maxout “Neuron”

2024/3/18 ACVLab 27

[Goodfellow et al., 2013]

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(
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TLDR: In practice:

 Use ReLU. Be careful with your learning rates

 Try out Leaky ReLU / Maxout / ELU

 Try out tanh but don’t expect much

 Don’t use sigmoid

2024/3/18 ACVLab 28
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SOTA Activation Function so far

2024/3/18 ACVLab 29

MISH SWISH
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SOTA Activation Function so far

2024/3/18 ACVLab 30

GELU
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Source:https://mlfromscratch.com/activation-functions-explained/#/



DATA PREPROCESSING
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Data Preprocessing

2024/3/18 ACVLab 33

(Assume X [NxD] is data matrix,  each example in a row)
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Remember: Consider what happens when

2024/3/18 ACVLab 34

What can we say about the gradients on w?  
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical  
optimal w  
vector

zig zag path

allowed  
gradient  
update  
directions

allowed  
gradient  
update  
directions

41

the input to a neuron is always positive...
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Data Preprocessing

2024/3/18 ACVLab 35

(Assume X [NxD] is data matrix,  each example in a row)
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Data Preprocessing

2024/3/18 ACVLab 36

In practice, you may also see PCA and Whitening of the data

(data has diagonal  
covariance matrix)

(covariance matrix is the  
identity matrix)
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Data Preprocessing

2024/3/18 ACVLab 37

Before normalization: classification loss  
very sensitive to changes in weight matrix;  
hard to optimize

April 24, 2018April 24, 2018

After normalization: less sensitive to small  
changes in weights; easier to optimize
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In practice for Images: center only

 e.g. consider CIFAR-10 example with [32,32,3] images

 Subtract the mean image (e.g. AlexNet)  (mean image = [32,32,3] array)

 Subtract per-channel mean (e.g. VGGNet)  (mean along each channel = 3 numbers)

 Subtract per-channel mean and Divide by per-channel std (e.g. ResNet)  (mean 
along each channel = 3 numbers)

Not common to do PCA or  whitening

2024/3/18 ACVLab 38



WEIGHT INITIALIZATION
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Q: what happens when W=constant init is used?

2024/3/18 ACVLab 40



Slide Credit cs231n

First idea: Small random numbers

2024/3/18 ACVLab 41

(gaussian with zero mean and 1e-2 standard deviation)
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Works ~okay for small networks, but problems with  
deeper networks.

First idea: Small random numbers

2024/3/18 ACVLab 42

(gaussian with zero mean and 1e-2 standard deviation)
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Forward pass for a 6-layer  
net with hidden size 4096

Weight Initialization: Activation statistics

2024/3/18 ACVLab 43
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Weight Initialization: Activation statistics

2024/3/18 ACVLab 44

Forward pass for a 6-layer  
net with hidden size 4096

All activations tend to zero  
for deeper network layers

Q: What do the gradients  
dL/dW look like?

A: All zero, no learning =(
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Increase std of initial  
weights from 0.01 to 0.05

Weight Initialization: Activation statistics

2024/3/18 ACVLab 45
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Weight Initialization: Activation statistics

2024/3/18 ACVLab 46

All activations saturate

Q: What do the gradients  
look like?

A: Local gradients all
zero,  no learning =(

Increase std of initial  
weights from 0.01 to 0.05
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“Just right”: Activationsare  
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

Weight Initialization: “Xavier” Initialization

2024/3/18 ACVLab 47

“Xavier” initialization:  
std = 1/sqrt(Din)
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Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

Weight Initialization: “Xavier” Initialization

2024/3/18 ACVLab 48

y = Wx  
h = f(y) i i i i= Din * (E[x 2]E[w 2] - E[x ]2 E[w ]2)

= Din * Var(xi) * Var(wi)

[Assume x, w are iid]  
[Assume x, w independant]  
[Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation:
Var(yi) = Din * Var(xiwi)

“Just right”: Activationsare  
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

“Xavier” initialization:  
std = 1/sqrt(Din)
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Weight Initialization: What about ReLU?

2024/3/18 ACVLab 49

Xavier assumes zero  
centered activation function

Activations collapse to zero  
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

2024/3/18 ACVLab 50

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are  
nicely scaled for all layers!
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Proper initialization is an active area of research…

 Understanding the difficulty of training deep feedforward neural networks

 by Glorot and Bengio, 2010

 Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

 Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

 Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et  
al., 2015

 Data-dependent Initia0lizations of Convolutional Neural Networks by Krähenbühl et al., 2015

 All you need is a good init, Mishkin and Matas, 2015

 Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

 The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

 Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415 
(2016).

2024/3/18 ACVLab 51



BATCH NORMALIZATION
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Batch Normalization

2024/3/18 ACVLab 53

[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make  
each dimension zero-mean unit-variance, apply:
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Input:
Per-channel mean,  
shape is D

Per-channel var,  
shape is D

Normalized x,  
Shape is N x D

Batch Normalization

2024/3/18 ACVLab 54

[Ioffe and Szegedy, 2015]

XN

D

April 24, 201854 April 24, 2018

Problem: What if zero-mean, unit  
variance is too hard of a constraint?
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Input: Per-channel mean,  
shape is D

Per-channel var,  
shape is D

Normalized x,  
Shape is N x D

Batch Normalization

2024/3/18 ACVLab 55

[Ioffe and Szegedy, 2015]

Learnable scale and shift
parameters:

Output,
Shape is N x D

Learning = ,
= will recover the

identity function!

Estimates depend on minibatch;  can’t do 
this at test-time!

(Running) average of values 
seen during training

(Running) average of values 
seen during training

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer
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Batch Normalization

2024/3/18 ACVLab 56
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Feature Scaling

2024/3/18 ACVLab 57

…
…

…
…

…
…

…
…

…
…

…… ……

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑟𝑟 𝑥𝑥𝑅𝑅

mean: 𝑚𝑚𝑖𝑖

standard 
deviation: 𝜎𝜎𝑖𝑖

𝑥𝑥𝑖𝑖𝑟𝑟 ←
𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑚𝑚𝑖𝑖

𝜎𝜎𝑖𝑖
The means of all dimensions are 0, 
and the variances are all 1 

For each 
dimension i:

𝑥𝑥11

𝑥𝑥21
𝑥𝑥12

𝑥𝑥22

In general, gradient descent converges much faster 
with feature scaling than without it.
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𝑎𝑎3

𝑎𝑎2

𝑎𝑎1

Batch Normalization
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝑊𝑊2

𝑊𝑊2

𝑊𝑊2

Sigm
oid

……

……

……

𝑊𝑊1 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 =

Sigm
oid

Sigm
oid

Batch
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Batch normalization
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝜇𝜇 𝜎𝜎

𝜇𝜇 =
1
3
�
𝑖𝑖=1

3

𝑧𝑧𝑖𝑖

𝜎𝜎 =
1
3
�
𝑖𝑖=1

3

𝑧𝑧𝑖𝑖 − 𝜇𝜇 2

𝜇𝜇 and 𝜎𝜎
depends on 𝑧𝑧𝑖𝑖

Note: Batch normalization 
cannot be applied on 
small batch.
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Batch normalization
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝜇𝜇 𝜎𝜎

𝑧̃𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

𝜇𝜇 and 𝜎𝜎
depends on 𝑧𝑧𝑖𝑖

𝑎𝑎3

𝑎𝑎2

𝑎𝑎1

Sigm
oid

Sigm
oid

Sigm
oid

𝑧̃𝑧1

𝑧̃𝑧2

𝑧̃𝑧3

How to do 
backpropogation?
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Batch normalization
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝜇𝜇 𝜎𝜎

𝑧̂𝑧𝑖𝑖 = 𝛾𝛾⨀𝑧̃𝑧𝑖𝑖 + 𝛽𝛽

𝜇𝜇 and 𝜎𝜎
depends on 𝑧𝑧𝑖𝑖

𝑧̂𝑧3

𝑧̂𝑧2

𝑧̂𝑧1𝑧̃𝑧1

𝑧̃𝑧2

𝑧̃𝑧3

𝛽𝛽 𝛾𝛾

𝑧̃𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎



Slide Credit cs231n

Batch normalization

 At testing stage:

2024/3/18 ACVLab 62

𝑥𝑥 𝑊𝑊1 𝑧𝑧 𝑧̂𝑧𝑧̃𝑧
𝑧̂𝑧𝑖𝑖 = 𝛾𝛾⨀𝑧̃𝑧𝑖𝑖 + 𝛽𝛽𝑧̃𝑧 =

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

𝜇𝜇, 𝜎𝜎 are 
from batch

𝛾𝛾, 𝛽𝛽 are network 
parameters

We do not have batch at testing stage.

Ideal solution:

Computing 𝜇𝜇 and 𝜎𝜎 using the whole training dataset.

Practical solution:
Computing the moving average of 𝜇𝜇 and 𝜎𝜎 of the 
batches during training.

Acc

Updates

𝜇𝜇1
𝜇𝜇100

𝜇𝜇300
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Batch normalization - Benefit

 BN reduces training times, and make very deep net trainable.
 Because of less Covariate Shift, we can use larger learning rates.
 Less exploding/vanishing gradients

 Especially effective for sigmoid, tanh, etc.

 Learning is less affected by initialization. 

 BN reduces the demand for regularization. 

2024/3/18 ACVLab 63

𝑥𝑥𝑖𝑖 𝑊𝑊1 𝑧𝑧𝑖𝑖 𝑧̂𝑧𝑖𝑖𝑧̃𝑧𝑖𝑖

𝑧̂𝑧𝑖𝑖 = 𝛾𝛾⨀𝑧̃𝑧𝑖𝑖 + 𝛽𝛽𝑧̃𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

× 𝒌𝒌 × 𝒌𝒌

𝒌𝒌 𝒌𝒌
𝒌𝒌

𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌
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Batch Normalization for ConvNets

2024/3/18 ACVLab 64

x: N × D
Normalize

𝞵𝞵,𝝈𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

x: N×C×H×W
Normalize

𝞵𝞵,𝝈𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

April 24, 2018

Batch Normalization for
fully-connected networks

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)
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Batch Normalization

2024/3/18 ACVLab 65

[Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

Usually inserted after Fully  
Connected or Convolutional layers,  
and before nonlinearity.

...
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Batch Normalization

2024/3/18 ACVLab 66

[Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this  

is a very common source of bugs!

...
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Layer Normalization

2024/3/18 ACVLab 67

y = ɣ(x-𝞵𝞵)/𝝈𝝈+β y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Layer Normalization for  
fully-connected networks
Same behavior at train and test!  
Can be used in recurrent networks

April 24, 2018
Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

75 April 24, 2018

Batch Normalization for  
fully-connected networks

x: N × D x: N × D
Normalize

𝞵𝞵,𝝈𝝈: 1 × D
Normalize

𝞵𝞵,𝝈𝝈: N × 1
ɣ,β: 1 × D ɣ,β: 1 × D
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Instance Normalization
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x: N×C×H×W
Normalize

𝞵𝞵,𝝈𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

x: N×C×H×W
Normalize

𝞵𝞵,𝝈𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Instance Normalization for  
convolutional networks  
Same behavior at train / test!

Batch Normalization for  
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

2024/3/18 ACVLab 69

Wu and He, “Group Normalization”, ECCV 2018
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Group Normalization

2024/3/18 ACVLab 70

Wu and He, “Group Normalization”, ECCV 2018
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Summary

We looked in detail at:

 Activation Functions (use ReLU)

Data Preprocessing (images: 
subtract mean)

Weight Initialization (use 
Xavier/He init)

 Batch Normalization (use)

 Advanced:
 Spectral normalization! 

Avoid the gradient vary 
significantly!
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Next: How to train NN effectively and efficiently?

 Parameter update schemes

 Learning rate schedules

Gradient checking

 Regularization (Dropout etc.)

 Learning scheduler

Hyperparameter setting/search

 Evaluation (Ensembles etc.)

 Transfer learning / fine-tuning
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