judgement

Reflex

Demeunur

Ignoruince

Reflex.s

lomzmsmgm., i

ACTIVATION FUNCTION

”F‘eim?"ug
AND NORMALIZATION el L

[

Attltude

| il lt 1

ntuition

Sem.maﬁkeflex
rience:-

ance
Sensation

Demiganor,

E_muti_qn

= Obseruat
=Intuition’”
Experience
spective”

Sensal

anor

Deme:

‘History
IMeaning

Chih-Chung Hsu (35 &

Institute of Data Science

National Cheng Kung University
https://cchsu.info

Demeanor!

= M:‘gﬁmg Inseciirity
8 Bolief._,, “Habit - Habit. History
Sy Obseruutlon “Obserijation;

*History

“Instinct

Attitude

Emotions—— "8 .

Instinct Thought|

Self nmngz

Self-image

Perspective ™

Recap: Computational graphs

f

Wz

Li =3, max(0,s; —

Sy, +1)

@ (scores)

2024/3/18

ACVLab

R

\

Recap: Neural Networks

Linear score function: f — ”/ i

2-layer Neural Network f - W2 1']:1‘?:35‘,{(()TJ ngj)

x| W1 |[h| W2 |sg

07 100 10

plane car bird cat deer dog frog horse ship truck
[

2024/3/18 ACVLab 3

Recap: Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsampllng

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

2024/3/18 ACVLab 4

Recap: Convolutional Layer

activation map

__— 32x32x3 image

5x5x3 filter
E
@>@ &

convolve (slide) over all
spatial locations

32 28

2024/3/18 ACVLab

Recap: Convolutional Layer

activation maps

For example, if we had 6 5x5 filters, we’ll get 6 separate
activation maps

32

28

Convolution Layer

o2 28

LN NN NN

3 6
We stack these up to get a “new image” of size 28x28x6!

2024/3/18 ACVLab

Recap: Learning network parameters through optimization

while True:

weights grad = evaluate gradient(loss_ fun, data, weights)
Landscapeimageis CCO 1.0 public domain weights += - step size * weights grad # perform parameter update
Walkingman image is CC0 1.0 publicdomain

2024/3/18 ACVLab

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Recap: Mini-batch SGD

= Loop:

= Sample a batch of data

= Forward prop it through the graph (network), get loss
= Backprop to calculate the gradients

= Update the parameters using the gradient

2024/3/18 ACVLab

Overview

= One time setup
= activation functions, preprocessing, weight initialization, regularization, gradient
checking
= Training dynamics
= babysitting the learning process,
= parameter updates, hyperparameter optimization

= Evaluation
= model ensembles, test-time augmentation

2024/3/18 ACVLab

Part 1

= Activation Functions

= Data Preprocessing

= Weight Initialization

= Batch Normalization

= Babysitting the Learning Process
» Hyperparameter Optimization

2024/3/18 ACVLab

10

ACTIVATION FUNCTIONS

Activation Functions

L wo

*@ synapse
axon from a neuron

cell body

il (Zw@mﬁrb)
Zwimi +b f 1

output axon

activation
function

w1

¥

2024/3/18 ACVLab 12

Activation Functions

tanh
tanh(x)

RelLU
max (0, x)

2024/3/18

Sigmoid |
o(x) = 1+i—m 0
_

Leaky RelLU
max(0.1z, x)

Maxout
max(w{ = + by, wi x + by)

ELU

T T U
ae® —1) =<0

ACVLab

13

Activation Functions

Squashes numbers to range [0,1]

Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

problems:

P

-10 . 1. Saturated neurons “kill" the

gradients

Sigmoid
o(z) =1/(1+e77)

2024/3/18 ACVLab 14

sigmoid gate

X |60 a(m)zl/(He‘i)
3 -
9L 9o OL]\ oL
dx Or Oo oo T

What happens when x =-107?
What happens when x = 0?
What happens when x =107

2024/3/18 ACVLab

15

Activation Functions

P

Sigmoid
o(x) =1/(1+e7%)

2024/3/18

Squashes numbers to range [0,1]

Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

problems:

1. Saturated neurons “kill” the
gradients
2. Sigmoid outputs are not zero-centered

ACVLab 16

Activation Functions

P

Sigmoid
o(x) =1/(1+e7%)

2024/3/18

Squashes numbers to range [0,1]

Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-centered

3. exp() is a bit compute expensive

ACVLab 17

Consider what happens when the input to a neuron is
always positive...

Zo Wy
@
axon from a neuron gynapse
. W

output axon

activation
function

What can we say about the gradients on w?

2024/3/18 ACVLab 18

Consider what happens when the input to a neuron is

always positive...

f Z’wz‘xi + b

What can we say about the gradients on w?

Always all positive or all negative :(
(For a single element! Minibatches help)

2024/3/18 ACVLab

allowed
gradient
update
directions
, [
zig zag path
allowed
gradient
update
directions
hypothetical
optimal w
vector

19

Activation Functions

1

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

—i) 10

tanh(x)

[LeCun et al., 1991]

2024/3/18 ACVLab 20

Activation Functions

10;

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

v

-10 10
Computes f(x) = max(0,x)

RelLU

(Rectified Linear Unit) _
[Krizhevsky et al., 2012]

2024/3/18 ACVLab 21

Activation Functions

10;

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

-10 Y 10

- Not zero-centered output
Computes f(x) = max(0,x) - An annoyance:

RelLU
(Rectified Linear Unit)

hint: what is the gradient when x <07?
[Krizhevsky et al., 2012]

2024/3/18 ACVLab 22

X 55| RelU o(x) = max(0, x)

_d
% gate -«

8L 0o 0L oL

10+

dxr Oz Ho oo ~T0

What happens when x =-107?
What happens when x = 07?
What happens when x =107

2024/3/18 ACVLab

10

23

active ReLU %/\/ Dg
> DATA CLOUD

dead RelLU
will never activate
=> never update

2024/3/18 ACVLab 24

Activation Functions

10,

Leaky RelL U

f(z) = max(0.01z, x)

[Mass et al., 2013]

2024/3/18

[He et al., 2015]

Does not saturate
Computationally efficient

Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

will not “die”.
Parametric Rectifier (PReLU)

fle) = max{owx;)

backprop into \alpha (parameter)

ACVLab 25

Activation Functions

10,

ol = {1‘: if #5100

a(exp(z) —1) ifz <0
Exponential Linear Units (ELU)

2024/3/18

ACVLab

All benefits of ReLU

Closer to zero mean outputs
Negative saturation regime
compared with Leaky Rel.U
adds some robustness to noise

Computation requires exp()

[Clevert et al., 2015]

26

Maxout “Neuron”

- Does not have the basic form of dot product -> nonlinearity
- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w] z + by, w; x + by)

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

2024/3/18 ACVLab 27

TLDR: In practice:

= Use RelLU. Be careful with your learning rates
= Tryout Leaky ReLU / Maxout / ELU
= Try out tanh but don’t expect much

= Don’t use sigmoid

2024/3/18 ACVLab

28

SOTA Activation Function so far

—sigmoid
—RelU ' '
—softplus

Figure 1. Mish Activation Function -5 0 5

f(x) =xtanh(softplus(x)) = xtanh(In(1 +¢")) f(g;) = - SlngId(B.T)

MISH SWISH

2024/3/18 ACVLab 29

SOTA Activation Function so far

GELU(z) = 0.5z (1 + tanh ({/2/n(z + 0.0447152%)))

GELU

2024/3/18 ACVLab

30

Identity | Sigmoid

RandomizedRelU =~ =~ ParametericRelU

Exponentional Linear Unit | Soft Sign | Inverse Square Root Unit (ISRU)

Inverse Square Root Linear I i i Bipolar Relll Soft Plus

Source:https://mlfromscratch.com/activation-functions-explained/#,

DATA PREPROCESSING

Data Preprocessing

original data zero-centered data normalized data

1

-10 =10

1g =10 -5 0 3 13 -10 -5] 5

X -= np.mean(X, axis = 0) . X /= np.std(X, axis

(Assume X [NxD] is data matrix, each example in a row)

2024/3/18 ACVLab

0) .

33

Remember: Consider what happens when

allowed
gradient
update
directions
. zig zag path
[allowed J ap
gradient
the input to a neuron is always positive... update
directions
What can we say about the gradients on w? .
hypothetical

Always all positive or all negative :(optimal w
(this is also why you want zero-mean data!) vector

2024/3/18 ACVLab 34

Data Preprocessing

original data zero-centered data normalized data

1

-10 =10

1g =10 -5 0 3 13 -10 -5] 5

X -= np.mean(X, axis = 0) . X /= np.std(X, axis

(Assume X [NxD] is data matrix, each example in a row)

2024/3/18 ACVLab

0) .

35

Data Preprocessing

original data zero-centered data normalized data

1

0 - - 0
=5 -5 i
Y
- 5 pis 4T =3 0 5 15 D) =3] 5 10
(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

In practice, you may also see PCA and Whitening of the data

2024/3/18 ACVLab 36

Data Preprocessing

Before normalization: classification loss
very sensitive to changes in weight matrix;

hard to optimize

2024/3/18

> P>

After normalization: less sensitive to small
changes in weights; easier to optimize

ACVLab 37

In practice for Images: center only

= .g. consider CIFAR-10 example with [32,32,3] images
= Subtract the mean image (e.g. AlexNet) (meanimage = [32,32,3] array)
= Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)

= Subtract per-channel mean and Divide by per-channel std (e.g. ResNet) (mean
along each channel = 3 numbers)

= Not common to do PCA or whitening

2024/3/18 ACVLab 38

WEIGHT INITIALIZATION

Q: what happens when W=constant init is used?

input layer
hidden layer

2024/3/18

First idea: Small random numbers

W= 0.01 * np.random.randn(Din, Dout)

(gaussian with zero mean and le-2 standard deviation)

2024/3/18 ACVLab

41

First idea: Small random numbers

W= 0.01 * np.random.randn(Din, Dout)

(gaussian with zero mean and le-2 standard deviation)

Works ~okay for small networks, but problems with
deeper networks.

2024/3/18 ACVLab

42

Weight Initialization: Activation statistics

2024/3/18

dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

W 0.01 * np.random.randn(Din, Dout)
X np.tanh(x.dot(W))
hs.append(x)

ACVLab

43

Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): Q: What do the gradients
W= 0.01 * np.random.randn(Din, Dout) ika?
BN e dL/dW look like"

R APDONC(X) A: All zero, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

2024/3/18 ACVLab 44

Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial
hs = [] weights from 0.01 to 0.05

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):

W 0.05 * np.random.randn(Din, Dout)

X np.tanh(x.dot (W))
hs.append(x)

2024/3/18 ACVLab

45

Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05
X = np.random.randn(16, dims[0]) Q: What do the gradients

for Din, Dout in zip(dims[:-1], dims[1l:]): look like?
W= 0.05 * nP.random.randn(Din, Dout)
X = np.tanh(x.dot(W)) A: Local gradients all

F - APRERA{X) zero, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

=1 V] 1 =1 0 1 =1 0 1 -1 0 1 =1 0 1 =1 0 1

2024/3/18 ACVLab 46

Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right™: Activationsare
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)

For conv layers, Din is

X = np.tanh(x.dot(W)) kernel_size2 . input_channels

hs.append (x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

=1 0 1 =1 0 1 =1 0 1 | 0 1 =1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

=1 0 1

2024/3/18 ACVLab 47

Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activationsare
hs = [] std = 1/sqrt(Din) nicely scaled for all layers!
X = np.random.randn(16, dims[0])

for Din, Dout in zio(dimsl:-11, dimsf1:1):

For conv layers, Din is

W = np.random.randn(Din, Dout) / np.sgrt(Din) _ _
X = np.tanh(x.dot(W)) kernel_size? * input_channels
hs.append (x)
Derivation:
y = Wx Var(y,) = Di.n * Var(xw;) [Assume X, w are iid]
h = f(y) = Din * (E[x2]E[w?] - E[x]? E[w]?) [Assume x, w independant]
= Din * Var(x,) * Var(w,) [Assume X, w are zero-mean]

If Var(w,) = 1/Din then Var(y,) = Var(x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

2024/3/18 ACVLab 48

Weight Initialization: What about ReLU?

dims = [4096] * 7 Change from tanh to ReLU Xavier assur.nes.zero .
hs = [] centered activation function

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):
W_= np.random.randn(Din, Dout) / np.sqrt(Din) Activations Collapse to zero

X = np.maximum(0, x.dot(W)) . . _
Feeoeed T again, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10

2024/3/18 ACVLab 49

Weight Initialization: Kaiming / MSRA Initialization

Jims 177°1 T 7 RelU correction: std = sqrt(2 /Din) “Just right”: Activations are

¥ = ni. randon. candn(16, dins[0]) nicely scaled for all layers!
for Din, Dout in zip(dims[:-1 dims[1:1):
W = np.random.randn(Din, Dout) * np.sqrt(2/Din)
X = np.maximum(0, x.dot(W))

hs.append (x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

=1 0 1 =1 0 1 =1 0 1 =1 0 1 =1 0 1 =1 H] 1

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

2024/3/18 ACVLab 50

Proper initialization is an active area of research...

» Understanding the difficulty of training deep feedforward neural networks

» by Glorot and Bengio, 2010
» Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
» Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

» Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

= Data-dependent InitiaOlizations of Convolutional Neural Networks by Krahenbhl et al., 2015

» All you need is a good init, Mishkin and Matas, 2015

» Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

» The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

» Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415
(2016).

2024/3/18 ACVLab 51

BATCH NORMALIZATION

Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

~(F) _ (k) _ E[m(k)}
\/ Var[z(¥)]

[loffe and Szegedy, 2015]

2024/3/18 ACVLab 53

Batch Normalization

Input: : N x D 1
oy = == Z Ly j Per-channel mean,
N ¢4 ’ shape is D
A AA i=1
1 N
2 __ Z 2 Per-channel var
g5 = — Ti i — i y
N X J N 4 1(o NJJ) shape is D
1=
. :U. e .
.= b Hi Normalized X,

Lij =
vvy ,/032.4_5 Shapeis N xD

D Problem: What if zero-mean, unit
[loffe and Szegedy, 2015] variance is too hard of a constraint?

2024/3/18 ACVLab 54

= Estimates depend on minibatch; can’t do
Batch Normalization this at test-time!

Input: Z : N x) _ Running) average of values Per-chgnnel mean,
seen during training shape is D

Learnable scale and shift

parameters: Running) average of values | Per-channelvar,
' seen during training shape is D
A, 3 5 1D

During testing batchnorm Normalized x,

: Shapeis NxD
becomes a linear operator!
Can be fused with the previous Outout
_ utput,
fully-connected or conv layer Shape is N x D

[loffe and Szegedy, 2015]

2024/3/18 ACVLab 55

Batch Normalization

: Make different features
Feature Scallng have the same scaling

W
i (e JE —a 1,2.... —
w.
100, 200....... b 1,2 i b
w, Loss L w, Loss L

2024/3/18 ACVLab 56

Slide Credit cs231n

Feature Scaling

For each
dimension i:

mean: m;

standard
deviation: g;

In general, gradient descent converges much faster

09431 with feature scaling than without it.

57

Batch Normalization

58

2024/3/18

Batch normalization

i

u and o
depends on z

2024/3/18

%i(zi — 1?2

i=1

Note: Batch normalization
cannot be applied on
small batch.

59

Batch normalization

p and o

depends on z*
2024/3/18

How to do
backpropogation?

60

Batch normalization

p and o

depends on z*
2024/3/18

61

Batch normalization

= At testing stage:

. Z—U
== == 2t =y + B
g 7
i, o are ¥, B are network
from batch parameters
We do not have batch at testing stage. Acc |
|deal solution:
U300
Computing u and ¢ using the whole training dataset. H100
H1
Practical solution: .
Computing the moving average of u and o of the Updates

batches during training.

2024/3/18 ACVLab

62

Batch normalization - Benefit

= BN reduces training times, and make very deep net trainable.

= Because of less Covariate Shift, we can use larger learning rates.

= Less exploding/vanishing gradients
= Especially effective for sigmoid, tanh, etc.

= Learning is less affected by initialization.

= BN reduces the demand for regularization.

2024/3/18 ACVLab

63

Batch Normalization for ConvNets

Batch Normalization for
fully-connected networks

Xx: N x D
Normalize i
H,0: 1 x D
X' B 1 P
y = Y(x-p)/o+p

2024/3/18

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

X: NxCxHxW
Normalize i i i
H,0: 1xCx1xl
Y,B: 1xCx1lx1l
y = Y(x-u)/o+p

ACVLab 64

[loffe and Szegedy, 2015]
Batch Normalization

FC Usually inserted after Fully
N ___ Connected or Convolutional layers,

1 and before nonlinearity.
tanh

FC

BN (k) _ z*) — E[m(k)]
: \/ Var[z(¥)]

tanh

2024/3/18 ACVLab 65

[loffe and Szegedy, 2015]
Batch Normalization

FlC - Makes deep networks much easier to train!
BN - Improves gradient flow

] - Allows higher learning rates, faster convergence
tanh - Networks become more robust to initialization

- Acts as regularization during training

FC - Zero overhead at test-time: can be fused with conv!

l - Behaves differently during training and testing: this
BlN is a very common source of bugs!
tanh

2024/3/18 ACVLab 66

Layer Normalization

Layer Normalization for

Batch Normalization for fully-connected networks
fully-connected networks Same behavior at train and test!
Can be used in recurrent networks
X: N x D X: N x D
Normalize ¢ Normalize ¢
H,0: 1 x D H,0: N x 1
Y,p: 1 x D Y,B: 1 x D

y = Y(x-u)/o+B y = Y(x-u)/o+B

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

2024/3/18 ACVLab 67

Instance Normalization

Batch Normalization for
convolutional networks

X: NXCxHXW

Normalize | L

H,0: 1xCx1x1

Instance Normalization for
convolutional networks
Same behavior at train / test!

Y,B: 1xCx1lx1

y = Y(x-u)/o+p

X: NxCxHxW
Normalize i ‘
H,0: NxCx1x1l

Y,P: 1IxCx1lxl
y = Y(x-p)/o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

2024/3/18

68

Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H, W

Ld L

AN VA
ROV W

Ly g L

o e

Si={k| ke =ic}, Si={k|kn =in}, Si ={k|kn =in,kc =ic}

Wu and He, “Group Normalization”, ECCV 2018

2024/3/18 ACVLab

69

Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H, W

LT T L LT

L o L

AN VAN

LT W
AV RN

|1
|1
L
L
| —1
|~

8= ke =ic) bt SR i =i ()

Wu and He, “Group Normalization”, ECCV 2018

2024/3/18 ACVLab 70

Summary

» We looked in detall at:

= Activation Functions (use RelLU)

= Data Preprocessing (images: Algorithm 1 SGD with spectral normalization

SUbtraCt mea n) e Initialize @; € R% forl =1,... . L with a random vector (sampled from isotropic distri-
. Ce . . bution).
u Welg ht Initialization (use ¢ For each update and each layer {:
Xavier/H ein |t) 1. Apply power iteration method to a unnormalized weight W'

o — (WHTa /(W a|

= Batch Normalization (use) i Wioy/[Wia
I i Iz

. Advanced: 2. Calculate Wgy with the spectral norm:
-)
= Spectral normalization! Wi (W) = W o (W), where o (W) = &7 W,
Avoid the gradient vary
significantly! 3. Update W' with SGD on mini-batch dataset D, with a learning rate o:

W W — aVy (Wi (W), Dyy)

(20)
2

(22)

(23)

2024/3/18 ACVLab 71

Next: How to train NN effectively and efficiently?

= Parameter update schemes

= Learning rate schedules

= Gradient checking

= Regularization (Dropout etc.)

= Learning scheduler

» Hyperparameter setting/search
= Evaluation (Ensembles etc.)

= Transfer learning / fine-tuning

2024/3/18 ACVLab

72

	Activation Function and Normalization
	Recap: Computational graphs
	Recap: Neural Networks
	Recap: Convolutional Neural Networks
	Recap: Convolutional Layer
	Recap: Convolutional Layer
	Recap: Learning network parameters through optimization
	Recap: Mini-batch SGD
	Overview
	Part 1
	Activation Functions
	Activation Functions
	Activation Functions
	Activation Functions
	sigmoid gate
	Activation Functions
	Activation Functions
	Consider what happens when the input to a neuron is always positive...
	Consider what happens when the input to a neuron is always positive...
	Activation Functions
	Activation Functions
	Activation Functions
	投影片編號 23
	投影片編號 24
	Activation Functions
	Activation Functions
	Maxout “Neuron”
	TLDR: In practice:
	SOTA Activation Function so far
	SOTA Activation Function so far
	投影片編號 31
	Data Preprocessing
	Data Preprocessing
	Remember: Consider what happens when
	Data Preprocessing
	Data Preprocessing
	Data Preprocessing
	In practice for Images: center only
	Weight Initialization
	Q: what happens when W=constant init is used?
	First idea: Small random numbers
	First idea: Small random numbers
	Weight Initialization: Activation statistics
	Weight Initialization: Activation statistics
	Weight Initialization: Activation statistics
	Weight Initialization: Activation statistics
	Weight Initialization: “Xavier” Initialization
	Weight Initialization: “Xavier” Initialization
	Weight Initialization: What about ReLU?
	Weight Initialization: Kaiming / MSRA Initialization
	Proper initialization is an active area of research…
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Feature Scaling
	Batch Normalization
	Batch normalization
	Batch normalization
	Batch normalization
	Batch normalization
	Batch normalization - Benefit
	Batch Normalization for ConvNets
	Batch Normalization
	Batch Normalization
	Layer Normalization
	Instance Normalization
	Comparison of Normalization Layers
	Group Normalization
	Summary
	Next: How to train NN effectively and efficiently?

