ACTIVATION FUNCTION AND NORMALIZATION

Chih-Chung Hsu (許志仲) Institute of Data Science National Cheng Kung University https://cchsu.info

Recap: Computational graphs

Recap: Neural Networks

Recap: Convolutional Neural Networks

2024/3/18

Recap: Convolutional Layer

ACVLab

Recap: Convolutional Layer

Recap: Learning network parameters through optimization

Vanilla Gradient Descent

while True:

Landscape image is <u>CC0 1.0</u> public domain Walking man image is <u>CC0 1.0</u> public domain weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

ACVLab

Recap: Mini-batch SGD

- Loop:
- Sample a batch of data
- Forward prop it through the graph (network), get loss
- Backprop to calculate the gradients
- Update the parameters using the gradient

Overview

- One time setup
 - activation functions, preprocessing, weight initialization, regularization, gradient checking
- Training dynamics
 - babysitting the learning process,
 - parameter updates, hyperparameter optimization
- Evaluation
 - model ensembles, test-time augmentation

Part 1

- Activation Functions
- Data Preprocessing
- Weight Initialization
- Batch Normalization
- Babysitting the Learning Process
- Hyperparameter Optimization

ACTIVATION FUNCTIONS

Activation Functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Squashes numbers to range [0,1] Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

problems:

1. Saturated neurons "kill" the gradients

 $\sigma(x)=1/(1+e^{-x})$

Sigmoid

What happens when x = -10? What happens when x = 0? What happens when x = 10?

$$\sigma(x)=1/(1+e^{-x})$$

Squashes numbers to range [0,1] Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

problems:

1. Saturated neurons "kill" the gradients

2. Sigmoid outputs are not zero-centered

$$\sigma(x)=1/(1+e^{-x})$$

Squashes numbers to range [0,1] Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

Consider what happens when the input to a neuron is always positive...

What can we say about the gradients on **w**?

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b\right)$$

What can we say about the gradients on **w**? Always all positive or all negative :((For a single element! Minibatches help)

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

Computes f(x) = max(0,x)

ReLU (Rectified Linear Unit)

[Krizhevsky et al., 2012]

Computes f(x) = max(0,x)

ReLU (Rectified Linear Unit)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0? [Krizhevsky et al., 2012]

What happens when x = -10? What happens when x = 0? What happens when x = 10?

Leaky ReLU $f(x) = \max(0.01x, x)$

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)

- _| will not "die".

Parametric Rectifier (PReLU) $f(x) = \max(\alpha x, x)$ backprop into \alpha (parameter)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Exponential Linear Units (ELU)

- Computation requires exp()

[Clevert et al., 2015]

Maxout "Neuron"

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

SOTA Activation Function so far

5

SOTA Activation Function so far

Slide Credit cs231n

Source:https://mlfromscratch.com/activation-functions-explained/#/

DATA PREPROCESSING

Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

Remember: Consider what happens when

$$f\left(\sum_i w_i x_i + b
ight)$$

the input to a neuron is always positive...

What can we say about the gradients on **w**? Always all positive or all negative :((this is also why you want zero-mean data!)

Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing

In practice, you may also see PCA and Whitening of the data
Data Preprocessing

In practice for Images: center only

- e.g. consider CIFAR-10 example with [32,32,3] images
- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)
- Subtract per-channel mean and Divide by per-channel std (e.g. ResNet) (mean along each channel = 3 numbers)
- Not common to do PCA or whitening

WEIGHT INITIALIZATION

Q: what happens when W=constant init is used?

W = 0.01 * np.random.randn(Din, Dout)

(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01 * np.random.randn(Din, Dout)

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper networks.

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

Weight Initialization: Activation statistics

```
Forward pass for a 6-layer
dims = [4096] * 7
                                                 All activations tend to zero
                      net with hidden size 4096
hs = []
                                                for deeper network layers
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
                                                Q: What do the gradients
    W = 0.01 * np.random.randn(Din, Dout)
                                                 dL/dW look like?
    x = np.tanh(x.dot(W))
    hs.append(x)
                                                A: All zero, no learning =(
```


ACVLab

Weight Initialization: Activation statistics

dims	s = [4096]	* 7	Incre	ease std o	of initia	l
hs	[]			weig	jhts from	0.01 tc	0.05
<pre>x = np.random.randn(16, dims[0])</pre>							
<pre>for Din, Dout in zip(dims[:-1], dims[1:]):</pre>							
	W =	0.05 *	np.r	ando	m.randn	(Din,	Dout)
	x = np.tanh(x.dot(W))						
	hs.a	ppend(x)				

Weight Initialization: Activation statistics

Weight Initialization: "Xavier" Initialization

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT2010

Weight Initialization: "Xavier" Initialization

dims = [4096] * 7 hs = []	"Xavier" initialization:std = 1/sqrt(Din)	"Just right": Activations are nicely scaled for all layers!	
x = np.random.ran	ndn(16, dims[0])	, , , , , , , , , , , , , , , , , , ,	
W = np.random x = np.tanh(x)	<pre>.randn(Din, Dout) / np.sqrt(Din) .dot(W))</pre>	For conv layers, Din is kernel_size ² * input_channels	
hs.append(x)			
y = Wx $h = f(y)$	erivation: ar(y _i) = Din * Var(x _i w _i) = Din * (E[x ² _i]E[w ² _i] - E[x _i] ² E[w	[Assume x, w are iid] [Assume x, w independant]	
lf	$= \lim_{i \to \infty} var(x_i) - var(w_i)$ Var(w_i) = 1/Din then Var(y_i) = Var(x_i)	[Assume x, w are zero-mean]	

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT2010

Weight Initialization: What about ReLU?

Weight Initialization: Kaiming / MSRA Initialization

He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

Proper initialization is an active area of research...

- Understanding the difficulty of training deep feedforward neural networks
 - by Glorot and Bengio, 2010
- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
- Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
- Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
- Data-dependent Initia0lizations of Convolutional Neural Networks by Krähenbühl et al., 2015
- All you need is a good init, Mishkin and Matas, 2015
- Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019
- The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
- Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415 (2016).

BATCH NORMALIZATION

"you want zero-mean unit-variance activations? just make them so."

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

[loffe and Szegedy, 2015]

[loffe and Szegedy, 2015]

Problem: What if zero-mean, unit variance is too hard of a constraint?

Batch NormalizationEstimates depend on minibatch; can't do
this at test-time!

Input: x:N imes D

Learnable scale and shift parameters:

 $\gamma,\beta:D$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$\mu_{j} = \begin{pmatrix} \text{Running} \end{pmatrix} \text{ average of values} \\ \text{seen during training} \end{pmatrix} Per-channel mean, \\ \text{shape is D} \end{pmatrix}$$

$$\sigma_{j}^{2} = \begin{pmatrix} \text{Running} \end{pmatrix} \text{ average of values} \\ \text{seen during training} \end{pmatrix} Per-channel var, \\ \text{shape is D} \end{pmatrix}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Normalized x, Shape is N x D

Output, Shape is N x D

2024/3/18

ACVLab

Feature Scaling

In general, gradient descent converges much faster with feature scaling than without it.

Slide Credit cs231n

• At testing stage:

We do not have *batch* at testing stage.

- Ideal solution:
 - Computing μ and σ using the whole training dataset.
- Practical solution:

Computing the moving average of μ and σ of the batches during training.

Batch normalization - Benefit

- BN reduces training times, and make very deep net trainable.
 - Because of less Covariate Shift, we can use larger learning rates.
 - Less exploding/vanishing gradients
 - Especially effective for sigmoid, tanh, etc.
- Learning is less affected by initialization.

• BN reduces the demand for regularization.

Batch Normalization for ConvNets

[loffe and Szegedy, 2015]

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!

Layer Normalization

Batch Normalization for fully-connected networks

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

2024/3/18

Layer Normalization for fully-connected networks Same behavior at train and test! Can be used in recurrent networks

Normalize

$$\mu, \sigma: N \times 1$$

 $\gamma, \beta: 1 \times D$
 $y = \gamma(x-\mu)/\sigma+\beta$

NT

Instance Normalization

```
Batch Normalization for convolutional networks
```

x: N×C×H×W Normalize μ, σ : 1×C×1×1 χ, β : 1×C×1×1 $\chi = \chi(x-\mu)/\sigma+\beta$ **Instance Normalization** for convolutional networks Same behavior at train / test!

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Comparison of Normalization Layers

Wu and He, "Group Normalization", ECCV 2018

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Summary

- We looked in detail at:
- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/He init)
- Batch Normalization (use)
- Advanced:
 - Spectral normalization! Avoid the gradient vary significantly!

Algorithm 1 SGD with spectral normalization

- Initialize ũ_l ∈ R^{d_l} for l = 1,..., L with a random vector (sampled from isotropic distribution).
- For each update and each layer *l*:
 - 1. Apply power iteration method to a unnormalized weight W^l :

$$\tilde{\boldsymbol{v}}_l \leftarrow (W^l)^{\mathrm{T}} \tilde{\boldsymbol{u}}_l / \| (W^l)^{\mathrm{T}} \tilde{\boldsymbol{u}}_l \|_2$$
(20)

$$\tilde{\boldsymbol{u}}_l \leftarrow W^l \tilde{\boldsymbol{v}}_l / \|W^l \tilde{\boldsymbol{v}}_l\|_2 \tag{21}$$

2. Calculate \overline{W}_{SN} with the spectral norm:

$$\bar{W}_{\rm SN}^l(W^l) = W^l / \sigma(W^l), \text{ where } \sigma(W^l) = \tilde{\boldsymbol{u}}_l^{\rm T} W^l \tilde{\boldsymbol{v}}_l$$
(22)

3. Update W^l with SGD on mini-batch dataset \mathcal{D}_M with a learning rate α :

$$W^{l} \leftarrow W^{l} - \alpha \nabla_{W^{l}} \ell(\bar{W}^{l}_{\mathrm{SN}}(W^{l}), \mathcal{D}_{M})$$
(23)

Next: How to train NN effectively and efficiently?

- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Learning scheduler
- Hyperparameter setting/search
- Evaluation (Ensembles etc.)
- Transfer learning / fine-tuning