
Chih-Chung Hsu (許志仲)
Institute of Data Science
National Cheng Kung University
https://cchsu.info

ACTIVATION FUNCTION
AND NORMALIZATION

Slide Credit cs231n

x

W

hinge
loss

R

+ L

5

s (scores)

Recap: Computational graphs

2024/3/18 ACVLab 2

*

Slide Credit cs231n

Recap: Neural Networks

2024/3/18 ACVLab 3

x hW1 sW2

3072 100 10

6

Linear score function:

2-layer Neural Network

Slide Credit cs231n

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture1

4

Recap: Convolutional Neural Networks

2024/3/18 ACVLab 4

Slide Credit cs231n

Recap: Convolutional Layer

2024/3/18 ACVLab 5

32

3

32x32x3 image
5x5x3 filter

32

convolve (slide) over all
spatial locations

activation map

5

1

28

28

Slide Credit cs231n

Recap: Convolutional Layer

2024/3/18 ACVLab 6

32

32

3

Convolution Layer

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate
activation maps

We stack these up to get a “new image” of size 28x28x6!
9

activation maps

Slide Credit cs231n

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Recap: Learning network parameters through optimization

2024/3/18 ACVLab 77

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Slide Credit cs231n

8

Recap: Mini-batch SGD

 Loop:

 Sample a batch of data

 Forward prop it through the graph (network), get loss

 Backprop to calculate the gradients

Update the parameters using the gradient

2024/3/18 ACVLab 8

Slide Credit cs231n

Overview

One time setup
 activation functions, preprocessing, weight initialization, regularization, gradient

checking

 Training dynamics
 babysitting the learning process,
 parameter updates, hyperparameter optimization

 Evaluation
 model ensembles, test-time augmentation

2024/3/18 ACVLab 9

Slide Credit cs231n

Part 1

 Activation Functions

Data Preprocessing

Weight Initialization

 Batch Normalization

 Babysitting the Learning Process

Hyperparameter Optimization

2024/3/18 ACVLab 10

ACTIVATION FUNCTIONS

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 12

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 13

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 14

Sigmoid
1. Saturated neurons “kill” the

gradients

Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

problems:

Slide Credit cs231n

sigmoid gate

2024/3/18 ACVLab 15

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 16

Sigmoid
1. Saturated neurons “kill” the

gradients
2. Sigmoid outputs are not zero-centered

Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

problems:

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 17

Sigmoid
1. Saturated neurons “kill” the

gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

problems:

Slide Credit cs231n

Consider what happens when the input to a neuron is
always positive...

2024/3/18 ACVLab 18

What can we say about the gradients on w?

Slide Credit cs231n

Consider what happens when the input to a neuron is
always positive...

2024/3/18 ACVLab 19

What can we say about the gradients on w?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 20

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 21

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Computes f(x) = max(0,x)

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 22

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Computes f(x) = max(0,x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

2024/3/18 ACVLab 23

DATA CLOUD

dead ReLU
will never activate
=> never update

active ReLU

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

2024/3/18 ACVLab 24

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 25

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013] [He et al., 2015] backprop into \alpha (parameter)

Parametric Rectifier (PReLU)

Slide Credit cs231n

Activation Functions

2024/3/18 ACVLab 26

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime

compared with Leaky ReLU
adds some robustness to noise

- Computation requires exp()

[Clevert et al., 2015]Exponential Linear Units (ELU)

Slide Credit cs231n

Maxout “Neuron”

2024/3/18 ACVLab 27

[Goodfellow et al., 2013]

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

Slide Credit cs231n

TLDR: In practice:

 Use ReLU. Be careful with your learning rates

 Try out Leaky ReLU / Maxout / ELU

 Try out tanh but don’t expect much

 Don’t use sigmoid

2024/3/18 ACVLab 28

Slide Credit cs231n

SOTA Activation Function so far

2024/3/18 ACVLab 29

MISH SWISH

Slide Credit cs231n

SOTA Activation Function so far

2024/3/18 ACVLab 30

GELU

Slide Credit cs231n
2024/3/18 ACVLab 31

Source:https://mlfromscratch.com/activation-functions-explained/#/

DATA PREPROCESSING

Slide Credit cs231n

Data Preprocessing

2024/3/18 ACVLab 33

(Assume X [NxD] is data matrix, each example in a row)

Slide Credit cs231n

Remember: Consider what happens when

2024/3/18 ACVLab 34

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

41

the input to a neuron is always positive...

Slide Credit cs231n

Data Preprocessing

2024/3/18 ACVLab 35

(Assume X [NxD] is data matrix, each example in a row)

Slide Credit cs231n

Data Preprocessing

2024/3/18 ACVLab 36

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

Slide Credit cs231n

Data Preprocessing

2024/3/18 ACVLab 37

Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

April 24, 2018April 24, 2018

After normalization: less sensitive to small
changes in weights; easier to optimize

Slide Credit cs231n

In practice for Images: center only

 e.g. consider CIFAR-10 example with [32,32,3] images

 Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)

 Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)

 Subtract per-channel mean and Divide by per-channel std (e.g. ResNet) (mean
along each channel = 3 numbers)

Not common to do PCA or whitening

2024/3/18 ACVLab 38

WEIGHT INITIALIZATION

Slide Credit cs231n

Q: what happens when W=constant init is used?

2024/3/18 ACVLab 40

Slide Credit cs231n

First idea: Small random numbers

2024/3/18 ACVLab 41

(gaussian with zero mean and 1e-2 standard deviation)

Slide Credit cs231n

Works ~okay for small networks, but problems with
deeper networks.

First idea: Small random numbers

2024/3/18 ACVLab 42

(gaussian with zero mean and 1e-2 standard deviation)

Slide Credit cs231n

Forward pass for a 6-layer
net with hidden size 4096

Weight Initialization: Activation statistics

2024/3/18 ACVLab 43

Slide Credit cs231n

Weight Initialization: Activation statistics

2024/3/18 ACVLab 44

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero
for deeper network layers

Q: What do the gradients
dL/dW look like?

A: All zero, no learning =(

Slide Credit cs231n

Increase std of initial
weights from 0.01 to 0.05

Weight Initialization: Activation statistics

2024/3/18 ACVLab 45

Slide Credit cs231n

Weight Initialization: Activation statistics

2024/3/18 ACVLab 46

All activations saturate

Q: What do the gradients
look like?

A: Local gradients all
zero, no learning =(

Increase std of initial
weights from 0.01 to 0.05

Slide Credit cs231n

“Just right”: Activationsare
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

Weight Initialization: “Xavier” Initialization

2024/3/18 ACVLab 47

“Xavier” initialization:
std = 1/sqrt(Din)

Slide Credit cs231n

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT2010

Weight Initialization: “Xavier” Initialization

2024/3/18 ACVLab 48

y = Wx
h = f(y) i i i i= Din * (E[x 2]E[w 2] - E[x]2 E[w]2)

= Din * Var(xi) * Var(wi)

[Assume x, w are iid]
[Assume x, w independant]
[Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation:
Var(yi) = Din * Var(xiwi)

“Just right”: Activationsare
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

“Xavier” initialization:
std = 1/sqrt(Din)

Slide Credit cs231n

Weight Initialization: What about ReLU?

2024/3/18 ACVLab 49

Xavier assumes zero
centered activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

Slide Credit cs231n

Weight Initialization: Kaiming / MSRA Initialization

2024/3/18 ACVLab 50

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are
nicely scaled for all layers!

Slide Credit cs231n

Proper initialization is an active area of research…

 Understanding the difficulty of training deep feedforward neural networks

 by Glorot and Bengio, 2010

 Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

 Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

 Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

 Data-dependent Initia0lizations of Convolutional Neural Networks by Krähenbühl et al., 2015

 All you need is a good init, Mishkin and Matas, 2015

 Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

 The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

 Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (gelus)." arXiv preprint arXiv:1606.08415
(2016).

2024/3/18 ACVLab 51

BATCH NORMALIZATION

Slide Credit cs231n

Batch Normalization

2024/3/18 ACVLab 53

[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

Slide Credit cs231n

Input:
Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization

2024/3/18 ACVLab 54

[Ioffe and Szegedy, 2015]

XN

D

April 24, 201854 April 24, 2018

Problem: What if zero-mean, unit
variance is too hard of a constraint?

Slide Credit cs231n

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization

2024/3/18 ACVLab 55

[Ioffe and Szegedy, 2015]

Learnable scale and shift
parameters:

Output,
Shape is N x D

Learning = ,
= will recover the

identity function!

Estimates depend on minibatch; can’t do
this at test-time!

(Running) average of values
seen during training

(Running) average of values
seen during training

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

Slide Credit cs231n

Batch Normalization

2024/3/18 ACVLab 56

Slide Credit cs231n

Feature Scaling

2024/3/18 ACVLab 57

…
…

…
…

…
…

…
…

…
…

…… ……

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑟𝑟 𝑥𝑥𝑅𝑅

mean: 𝑚𝑚𝑖𝑖

standard
deviation: 𝜎𝜎𝑖𝑖

𝑥𝑥𝑖𝑖𝑟𝑟 ←
𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑚𝑚𝑖𝑖

𝜎𝜎𝑖𝑖
The means of all dimensions are 0,
and the variances are all 1

For each
dimension i:

𝑥𝑥11

𝑥𝑥21
𝑥𝑥12

𝑥𝑥22

In general, gradient descent converges much faster
with feature scaling than without it.

Slide Credit cs231n

𝑎𝑎3

𝑎𝑎2

𝑎𝑎1

Batch Normalization

2024/3/18 ACVLab 58

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝑊𝑊2

𝑊𝑊2

𝑊𝑊2

Sigm
oid

……

……

……

𝑊𝑊1 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 =

Sigm
oid

Sigm
oid

Batch

Slide Credit cs231n

Batch normalization

2024/3/18 ACVLab 59

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝜇𝜇 𝜎𝜎

𝜇𝜇 =
1
3
�
𝑖𝑖=1

3

𝑧𝑧𝑖𝑖

𝜎𝜎 =
1
3
�
𝑖𝑖=1

3

𝑧𝑧𝑖𝑖 − 𝜇𝜇 2

𝜇𝜇 and 𝜎𝜎
depends on 𝑧𝑧𝑖𝑖

Note: Batch normalization
cannot be applied on
small batch.

Slide Credit cs231n

Batch normalization

2024/3/18 ACVLab 60

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝜇𝜇 𝜎𝜎

𝑧̃𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

𝜇𝜇 and 𝜎𝜎
depends on 𝑧𝑧𝑖𝑖

𝑎𝑎3

𝑎𝑎2

𝑎𝑎1

Sigm
oid

Sigm
oid

Sigm
oid

𝑧̃𝑧1

𝑧̃𝑧2

𝑧̃𝑧3

How to do
backpropogation?

Slide Credit cs231n

Batch normalization

2024/3/18 ACVLab 61

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑊𝑊1

𝑊𝑊1

𝑊𝑊1

𝑧𝑧1

𝑧𝑧2

𝑧𝑧3

𝜇𝜇 𝜎𝜎

𝑧̂𝑧𝑖𝑖 = 𝛾𝛾⨀𝑧̃𝑧𝑖𝑖 + 𝛽𝛽

𝜇𝜇 and 𝜎𝜎
depends on 𝑧𝑧𝑖𝑖

𝑧̂𝑧3

𝑧̂𝑧2

𝑧̂𝑧1𝑧̃𝑧1

𝑧̃𝑧2

𝑧̃𝑧3

𝛽𝛽 𝛾𝛾

𝑧̃𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

Slide Credit cs231n

Batch normalization

 At testing stage:

2024/3/18 ACVLab 62

𝑥𝑥 𝑊𝑊1 𝑧𝑧 𝑧̂𝑧𝑧̃𝑧
𝑧̂𝑧𝑖𝑖 = 𝛾𝛾⨀𝑧̃𝑧𝑖𝑖 + 𝛽𝛽𝑧̃𝑧 =

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

𝜇𝜇, 𝜎𝜎 are
from batch

𝛾𝛾, 𝛽𝛽 are network
parameters

We do not have batch at testing stage.

Ideal solution:

Computing 𝜇𝜇 and 𝜎𝜎 using the whole training dataset.

Practical solution:
Computing the moving average of 𝜇𝜇 and 𝜎𝜎 of the
batches during training.

Acc

Updates

𝜇𝜇1
𝜇𝜇100

𝜇𝜇300

Slide Credit cs231n

Batch normalization - Benefit

 BN reduces training times, and make very deep net trainable.
 Because of less Covariate Shift, we can use larger learning rates.
 Less exploding/vanishing gradients

 Especially effective for sigmoid, tanh, etc.

 Learning is less affected by initialization.

 BN reduces the demand for regularization.

2024/3/18 ACVLab 63

𝑥𝑥𝑖𝑖 𝑊𝑊1 𝑧𝑧𝑖𝑖 𝑧̂𝑧𝑖𝑖𝑧̃𝑧𝑖𝑖

𝑧̂𝑧𝑖𝑖 = 𝛾𝛾⨀𝑧̃𝑧𝑖𝑖 + 𝛽𝛽𝑧̃𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

× 𝒌𝒌 × 𝒌𝒌

𝒌𝒌 𝒌𝒌
𝒌𝒌

𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌

Slide Credit cs231n

Batch Normalization for ConvNets

2024/3/18 ACVLab 64

x: N × D
Normalize

𝞵𝞵,𝝈𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

x: N×C×H×W
Normalize

𝞵𝞵,𝝈𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

April 24, 2018

Batch Normalization for
fully-connected networks

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

Slide Credit cs231n

Batch Normalization

2024/3/18 ACVLab 65

[Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

...

Slide Credit cs231n

Batch Normalization

2024/3/18 ACVLab 66

[Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this

is a very common source of bugs!

...

Slide Credit cs231n

Layer Normalization

2024/3/18 ACVLab 67

y = ɣ(x-𝞵𝞵)/𝝈𝝈+β y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Layer Normalization for
fully-connected networks
Same behavior at train and test!
Can be used in recurrent networks

April 24, 2018
Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

75 April 24, 2018

Batch Normalization for
fully-connected networks

x: N × D x: N × D
Normalize

𝞵𝞵,𝝈𝝈: 1 × D
Normalize

𝞵𝞵,𝝈𝝈: N × 1
ɣ,β: 1 × D ɣ,β: 1 × D

Slide Credit cs231n

Instance Normalization

2024/3/18 ACVLab 68

x: N×C×H×W
Normalize

𝞵𝞵,𝝈𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

x: N×C×H×W
Normalize

𝞵𝞵,𝝈𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵𝞵)/𝝈𝝈+β

Instance Normalization for
convolutional networks
Same behavior at train / test!

Batch Normalization for
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Slide Credit cs231n

Comparison of Normalization Layers

2024/3/18 ACVLab 69

Wu and He, “Group Normalization”, ECCV 2018

Slide Credit cs231n

Group Normalization

2024/3/18 ACVLab 70

Wu and He, “Group Normalization”, ECCV 2018

Slide Credit cs231n

Summary

We looked in detail at:

 Activation Functions (use ReLU)

Data Preprocessing (images:
subtract mean)

Weight Initialization (use
Xavier/He init)

 Batch Normalization (use)

 Advanced:
 Spectral normalization!

Avoid the gradient vary
significantly!

2024/3/18 ACVLab 71

Slide Credit cs231n

Next: How to train NN effectively and efficiently?

 Parameter update schemes

 Learning rate schedules

Gradient checking

 Regularization (Dropout etc.)

 Learning scheduler

Hyperparameter setting/search

 Evaluation (Ensembles etc.)

 Transfer learning / fine-tuning

2024/3/18 ACVLab 72

	Activation Function and Normalization
	Recap: Computational graphs
	Recap: Neural Networks
	Recap: Convolutional Neural Networks
	Recap: Convolutional Layer
	Recap: Convolutional Layer
	Recap: Learning network parameters through optimization
	Recap: Mini-batch SGD
	Overview
	Part 1
	Activation Functions
	Activation Functions
	Activation Functions
	Activation Functions
	sigmoid gate
	Activation Functions
	Activation Functions
	Consider what happens when the input to a neuron is always positive...
	Consider what happens when the input to a neuron is always positive...
	Activation Functions
	Activation Functions
	Activation Functions
	投影片編號 23
	投影片編號 24
	Activation Functions
	Activation Functions
	Maxout “Neuron”
	TLDR: In practice:
	SOTA Activation Function so far
	SOTA Activation Function so far
	投影片編號 31
	Data Preprocessing
	Data Preprocessing
	Remember: Consider what happens when
	Data Preprocessing
	Data Preprocessing
	Data Preprocessing
	In practice for Images: center only
	Weight Initialization
	Q: what happens when W=constant init is used?
	First idea: Small random numbers
	First idea: Small random numbers
	Weight Initialization: Activation statistics
	Weight Initialization: Activation statistics
	Weight Initialization: Activation statistics
	Weight Initialization: Activation statistics
	Weight Initialization: “Xavier” Initialization
	Weight Initialization: “Xavier” Initialization
	Weight Initialization: What about ReLU?
	Weight Initialization: Kaiming / MSRA Initialization
	Proper initialization is an active area of research…
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Feature Scaling
	Batch Normalization
	Batch normalization
	Batch normalization
	Batch normalization
	Batch normalization
	Batch normalization - Benefit
	Batch Normalization for ConvNets
	Batch Normalization
	Batch Normalization
	Layer Normalization
	Instance Normalization
	Comparison of Normalization Layers
	Group Normalization
	Summary
	Next: How to train NN effectively and efficiently?

