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CONVOLUTIONAL NEURAL 
NETWORKS



Last time: Neural Networks
Linear score function:  2-layer Neural Network
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Next: Convolutional Neural Networks
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture1
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The Mark I Perceptron machine was 
the first  implementation of the 
perceptron algorithm.

The machine was connected to a camera that used  
20×20 cadmium sulfide photocells to produce a 400-
pixel  image.

recognized
letters of the alphabet

update rule:

Frank Rosenblatt, ~1957: Perceptron

A bit of history...
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This image by Rocky Acosta is licensed under CC-BY 3.0
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https://creativecommons.org/licenses/by/3.0/us/


Widrow and Hoff, ~1960:Adaline/Madaline

A bit of history...
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These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical 
Report with permission from Stanford University Special Collections.

http://www-isl.stanford.edu/%7Ewidrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/%7Ewidrow/papers/c1960adaptiveswitching.pdf


Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...
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Illustration of Rumelhart et al., 1986 by Lane McIntosh,  
copyright CS231n 2017
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[Hinton and Salakhutdinov 2006]

Reinvigorated research in  
Deep Learning

A bit of history...
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Illustration of Hinton and Salakhutdinov 2006 by Lane  

McIntosh, copyright CS231n 2017



First strong results
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Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks  
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright  
CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Imagenet classification with deep convolutional  
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012
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A bit of history:

Hubel & Wiesel,  
1959
RECEPTIVE FIELDS OF SINGLE  
NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR  
INTERACTION
AND FUNCTIONAL ARCHITECTURE IN  THE 
CAT'S VISUAL CORTEX

1968... Cat image by CNX OpenStax is licensed  
under CC BY 4.0; changes made

1122



A bit of history
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Topographical mapping in the cortex:
nearby cells in cortex represent  
nearby regions in the visual field

Retinotopy images courtesy of Jesse Gomez in the  
Stanford Vision & Perception NeuroscienceLab.

Human brain

Visual  
cortex



Hierarchical organization
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Illustration of hierarchical organization in early visual  
pathways by Lane McIntosh, copyright CS231n2017



A bit of history:
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Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)  
simple cells: modifiable parameters  
complex cells: perform pooling



A bit of history:
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Gradient-based learning applied to  
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5



A bit of history:
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”
1177

ImageNet Classification 
with Deep Convolutional 
Neural Networks  
[Krizhevsky, Sutskever, 
Hinton, 2012]



Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere
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Fast-forward to today: ConvNets are everywhere
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Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with  
permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]
Figures copyright Clement Farabet, 2012.  
Reproduced with permission.



Fast-forward to today: ConvNets are everywhere
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NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup  
would involve NVIDIA Tegras, with integrated  
GPU and ARM-based CPU cores.

self-driving cars

This image by GBPublic_PR is  
licensed under CC-BY 2.0

https://www.flickr.com/photos/gbpublic/8178512552
https://creativecommons.org/licenses/by/2.0/


Fast-forward to today: ConvNets are everywhere
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[Taigman et al. 2014]

[Simonyan et al. 2014] Figures copyright Simonyan et al., 2014.  
Reproduced with permission.

Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma McIntosh,  
used with permission. Figure and architecture not from Taigman et al. 2014.

Illustration by Lane McIntosh,  
photos of Katie Cumnock  
used with permission.

https://github.com/tensorflow/models/tree/master/inception


Fast-forward to today: ConvNets are everywhere
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[Toshev, Szegedy 2014]

[Guo et al. 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,  
and Xiaoshi Wang, 2014. Reproduced withpermission.



Fast-forward to today: ConvNets are everywhere
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[Levy et al. 2016]

[Sermanet et al. 2011]  
[Ciresan et al.]

Photos by LaneMcIntosh.  
Copyright CS231n2017.

[Dieleman et al. 2014]
From left to right: public domain by NASA, usage permitted by  

ESA/Hubble, public domain by NASA, and public domain.

Figure copyright Levy et al. 2016.  
Reproduced withpermission.

https://pixabay.com/en/galaxies-overlapping-galaxies-601015/


Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

This image by Christin Khan is in the public domain  
and originally came from the U.S. NOAA.

Photo and figure by Lane McIntosh; not actual  
example from Mnih and Hinton, 2010paper.

Fast-forward to today: ConvNets are everywhere
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[Vinyals et al., 2015]  
[Karpathy and Fei-Fei,  
2015]

Image  
Captioning
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Minor errors Somewhat related

A white teddy bear sitting in  
the grass

A man riding a wave on  
top of a surfboard

A man in a baseball  
uniform throwing a ball

A cat sitting on a  
suitcase on the floor

A woman is holding a  
cat in her hand

All images are CC0 Public domain:  
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/ 
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/ 
https://pixabay.com/en/woman-female-model-portrait-adult-983967/ 
https://pixabay.com/en/handstand-lake-meditation-496008/ 
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson usingNeuraltalk2

A woman standing on a  
beach holding a surfboard

Correct

https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2


Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach  
from a blog post by Google Research.

Original image is CC0 public domain
Starry Night and Tree Roots by Van Gogh are in the public domain  
Bokeh image is in the public domain
Stylized images copyright Justin Johnson, 2017;  
reproduced with permission

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016  
Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://pixabay.com/en/san-francisco-california-city-210230/
https://pixabay.com/en/bokeh-abstract-background-blur-21951/


CONVOLUTIONAL NEURAL NETWORKS

(First without the brain stuff)



Convolutional Neural Networks捲積神經網路

 Also known as CNN, ConvNet, DCN

 CNN = a multi-layer neural network with
 Local connectivity
 Weight sharing
 Convolution operation

 Parameters reduction

保留Spatial information
 Pixel之間的關係
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Definition of Terms in Deep Learning
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Neurons
Activation function

非線性函數

Connection
Weights (權重)

Parameters (參數)

餵資料
(Data)

吐答案
(Label)



Number of parameters in DNN

 A lot of number of weights need to be optimized
 Data: image (100*100=10000), 7-layer NN

 Assumed you have 60,000 training samples
 Layer 1-6: 5000 neuros, last layer: 50 neuros
 10000*5000+7*(5000*5000)+5000*50 parameters …
 #parameters = 227550000 for one sample

 Total parameters to be learned from all samples
 227550000 * 60000

 Weight precision: 32 bit (4 byte)

 So you may aware that we have enough computational
resource
 As the case, we need 5XX GB memory per image!!
 5XX GB GPU memory, do you have one?

 CNN today
 Reduce the number of parameters as well as improve the performance on image type data
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Step 1: Local Connectivity

 Assumed that the input neurons: 7

 #nodes in 2nd layer: 3

 #Parameters
 Global connectivity: 3 x 7 = 21
 Local connectivity:   3 x 3 = 9
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Input layer

Hidden layer
neurons

Global connectivity
“Fully-connected layer”

Local connectivity
“Local connected layer”



Step 2: Weight Sharing

 Assumed that the input neurons: 7

 #nodes in 2nd layer: 3

 #Parameters
 Without weight sharing: 3 x 3 = 9
 With weight sharing : 3 x 1 = 3
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Input layer

Hidden layer

w1
w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing
“Local connected layer”

With weight sharing
“Convolutional Layer”

w1
w2

w3 w1
w2

w3

w1

w2
w3

convolution kernel:
Use a small kernel to 
convolve whole image to 
extract their “local feature”



Weight sharing? 

 Just apply “convolution operation”
 Improve the performance for images
 Reduce #parameters
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100 125 126

110 125 125

115 125 126

100 125 126 50 210 211 250 188 158

1. Conv: Keep the relation in 2D
2. Vectorization: keep horizontal relation only



Convolution Operation

 Conv, is based on so-called Filter/Kernel to extract the local features from an 
image
 Extract the local “variation”

 Sample: get the line pattern from an image
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Para!

Reduce the #para

How many para do we 
need for an image?

ANS: 9
A kernel can scan whole 
image to extract their 
local features



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1
1:

2:

3:

…

7:

8:

9:

…
13:

14:

15:

…
Only connect to 9 
input, not fully 
connected

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

Less parameters!
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:

…
13:

14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Less parameters!

Even less parameters!
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Visualization on convolution

 2D-Convolution
 Filtering
 Kernel
 Weighted moving sum

2024/3/12 Chih-Chung Hsu@ACVLab 34

Input Feature Map

.

.

.

Map N

Map 1

M convolutions



CNN IN STRUCTURE VIEW

Chih-Chung Hsu@ACVLab 35



3072
1
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10



3072
1
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product  
between a row of W and the input  
(a 3072-dimensional dot product)

1
10



32

3
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Convolution Layer

32x32x3 image -> preserve spatial structure

width

height

32
depth
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Convolution Layer

32

3

32x32x3 image

5x5x3 filter

Convolve the filter with the image
i.e. “slide over the image spatially,  
computing dot products”

32
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Convolution Layer
Filters always extend the full  
depth of the input volume

32

3

Convolve the filter with the image
i.e. “slide over the image spatially,  
computing dot products”

32

32x32x3 image

5x5x3 filter



32

Convolution Layer
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32x32x3 image  
5x5x3 filter

32

1 number:
the result of taking a dot product between the  
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

3



32

32
3

Convolution Layer
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32

32
3

Convolution Layer
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32

32
3

Convolution Layer
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32

32
3

Convolution Layer
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32

Convolution Layer
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32x32x3 image  
5x5x3 filter

32

convolve (slide) over all  
spatial locations

3 1

28

28

Feature map



32

32

3

32x32x3 image  
5x5x3 filter

convolve (slide) over all  
spatial locations

1

28

28

consider a second, green filter
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Feature map



32

32

3

Convolution Layer

6

28

28
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For example, if we had 6 5x5 filters, we’ll get 6 separate 
activation maps:

We stack these up to get a “new image” of size 28x28x6!

Feature maps
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with  
activation functions

32

32

3

28

28

6

CONV,  
ReLU
e.g. 6
5x5x3
filters
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with  
activation functions

32

32

3

CONV,  
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,  
ReLU
e.g. 10  
5x5x6  
filters

CONV,  
ReLU

….

10

24

24



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2
……

Those are the network 
parameters to be learned.

Matrix

Matrix

Each filter detects a small 
pattern (3 x 3). Property 1
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CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1
Filter 1

3 -1

stride=1
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CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

3 -3

If stride=2

We set stride=1 below

Filter 1
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CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Property 2
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CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do the same process 
for every filter

stride=1

4 x 4 image

Feature
Map

Filter 1
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CNN – Colorful image

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1 Filter 1

-1 1 -1
-1 1 -1
-1 1 -1 Filter 2

1 -1 -1
-1 1 -1
-1 -1 1

1 -1 -1
-1 1 -1
-1 -1 1

-1 1 -1
-1 1 -1
-1 1 -1

-1 1 -1
-1 1 -1
-1 1 -1

Colorful image
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

image
convolutio
n

-1 1 -1
-1 1 -1
-1 1 -1

1 -1 -1
-1 1 -1
-1 -1 1

1x

2x

……

36x

……

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-
connected
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The whole CNN

Fully Connected 
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flatten

Can repeat 
many times
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Preview
[Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16  

architecture from [Simonyan and Zisserman2014].



Preview
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example 5x5 filters
(32 total)

We call the layer convolutional  
because it is related to convolution  
of two signals:

elementwise multiplication and sum of  
a filter and the signal (image)

Figure copyright AndrejKarpathy.

one filter =>
one activation map

2024/3/12 Chih-Chung Hsu@ACVLab 61



preview:
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A closer look at spatial dimensions:

32

3

32x32x3 image  
5x5x3 filter

32

convolve (slide) over all  
spatial locations

activation map

1

28

28



7

7x7 input (spatially)  
assume 3x3 filter

7
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A closer look at spatial dimensions:



7

7x7 input (spatially)  
assume 3x3 filter

7

2024/3/12 Chih-Chung Hsu@ACVLab 65

A closer look at spatial dimensions:



7

7x7 input (spatially)  
assume 3x3 filter

7
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A closer look at spatial dimensions:



7

7x7 input (spatially)  
assume 3x3 filter

7
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A closer look at spatial dimensions:



7x7 input (spatially)  
assume 3x3 filter

=> 5x5 output

7

7
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A closer look at spatial dimensions:



7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2

7

7
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A closer look at spatial dimensions:



7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2

7

7
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A closer look at spatial dimensions:



7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2
=> 3x3 output!

7

7
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A closer look at spatial dimensions:



7x7 input (spatially)  
assume 3x3 filter  
applied with stride 3?

7

7
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A closer look at spatial dimensions:



7x7 input (spatially)  
assume 3x3 filter  
applied with stride 3?

7

7
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A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on  
7x7 input with stride 3.



N

N

F

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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In practice: Common to zero pad the border

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with  
stride 1, filters of size FxF, and zero-padding with  
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0



E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!  
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,  
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,  
ReLU
e.g. 10  
5x5x6  
filters

CONV,  
ReLU

….

10

24

24

Remember back to…
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Examples time
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Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?



Examples time
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Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10



Examples time

2024/3/12 Chih-Chung Hsu@ACVLab 81

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?



Examples time:
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Number of parameters in this layer?  each 
filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760 (+1 for bias)

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2



Convolution layer: summary
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Common settings:
K = (powers of 2, e.g. 32, 64, 128, 512

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size  
1x1x64, and performs a  
64-dimensional dot  
product)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size  
1x1x64, and performs a  
64-dimensional dot  
product)
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Example: CONV  layer in PyTorch

PyTorch is licensed under BSD 3-clause.

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE
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Example: CONV  layer in Keras

Keras is licensed under the MIT license.

https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE
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The brain/neuron view of CONV Layer

32x32x3 image  
5x5x3 filter

32

1 number:
the result of taking a dot product between  
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

32

3
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The brain/neuron view of CONV Layer

32x32x3 image  
5x5x3 filter

32

It’s just a neuron with local  
connectivity...

1 number:
the result of taking a dot product between  
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

32

3
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The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron  
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28
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The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of  
neurons arranged in a 3D grid  
(28x28x5)

There will be 5 different  
neurons all looking at the same  
region in the input volume5



3072
1
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Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product  
between a row of W and the input  
(a 3072-dimensional dot product)

1
10

Each neuron  
looks at the full  
input volume



two more layers to go: POOL/FC
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters  
and stride 2 6 8

3 4
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MAX POOLING



Parameters and convolutions
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as 
in ordinary Neural  Networks



http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Backpropagation

Now, lets assume the function f is a convolution between Input X and a Filter 
F. Input X is a 3x3 matrix and Filter F is a 2x2 matrix, as shown below:
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Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c



Backpropagation

 Convolution between Input X and Filter F, gives us an output O. This can be 
represented as
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Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c



Backpropagation (Forward part)
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Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c



Backpropagation (Forward part)

 So similar processes can be applied in anywhere
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Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c



Summary

 ConvNets stack CONV,POOL,FC layers

 Trend towards smaller filters and deeper architectures

 Trend towards getting rid of POOL/FC layers ( just CONV)

Historically architectures looked like
 [(CONV-RELU)*N-POOL]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet have challenged this paradigm
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RECURRENT NETWORKS
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Vanilla Neural Networks

10
4

“Vanilla” Neural Network



Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

10
5



Recurrent Neural Networks: Process Sequences

e.g. action prediction
sequence of video frames -> action class

10
6



Recurrent Neural Networks: Process Sequences

E.g. Video Captioning 
Sequence of video frames -> 
caption

10
7



Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level

10
8



Sequential Processing of Non-Sequence Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.  
Gregor et al, “DRAW:A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka,Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra,
2015. Reproduced with permission.

10
9

Classify images by taking a 
series of “glimpses”



Sequential Processing of Non-Sequence Data

Gregor et al, “DRAW:A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission

11
0

Generate images one piece at a time!



LENET
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Build a Deep Convolution Neural Network

 It’s a multilayer CNN:
 每一層 (Layer) 代表 N 個不同的 Kernel 計算出來的Feature maps，因此每一層會有 N

Channels
 層與層的連結：上一層的 Feature maps，經過 K 個不同 Kernel 計算得出下一層的 K 個

Feature maps (K channels)

最終，由於CNN每個 Layer 是一個4-D結構
 [Batch size × Width × Height × #Channels]
 將每個 Channel 都拉成 Vector，在把所有的 Vector Aggregate 起來
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LeNet5

 Introduced by Yann LeCun.

Raw image of 32 × 32 pixels as input

 The size of kernels：5*5
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LeNet5

C1, C3, C5 : Convolutional layer. 

 5 × 5 Convolution matrix.

 S2 , S4 : Subsampling layer.

 Subsampling by factor 2.

 F6 : Fully connected layer.
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LeNet5

輸入圖，先用6個 Kernels對圖做
Convolution，獲得6張特徵圖

每個 Convolution layer 都是拿來學 “特徵”
 C1, C3, and C5 layers

回想捲積 Conv
 不同的 Kernel (Filter)，會得到不同的影像
結果: 特徵

所有的 C 、FC，都會經過一次的
Activation function
 Sigmoid by default
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LeNet5: Subsampling (Pooling)
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LeNet5

C5 是怎麼回事?
 注意，S4已經是 5*5大小
 5*5 影像經過 5*5 的 Kernel

 1*1的結果，就是一個點
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LeNet5參數量計算

 C1

 Input size：32*32

 Kernel size：5*5

 #Kernels ：6

 Output size：28*28*6

 #Trainable variables： 5*5+1)*6=156

 #Connections ：(5*5+1)*6*(32-2-2)*(32-2-
2)=122304

 S2

 Input size ：28*28*6

 Kernel size ：2*2

 #Kernels：1

 Output size ：14*14*6

 #Trainable variables ：2*6=12，2=(w,b)

 #Connections：(2*2+1)*1*14*14*6 = 5880
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LeNet5
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LeNet5
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LeNet 5

如何從1張圖變成6張特徵圖?
 1 kernel (K) 產生一張特徵圖 (I*K)
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LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
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LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 1. 直接對應：少變多，複製，多變少，間隔取樣
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LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 2. Aggregated：一律產生對接個kernels的特徵圖，再疊加

 i.e., W*H*C  3*3*2 to 3*3*3, 27-dimensional dot product 
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LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 3. Full conv: 產生對接個kernels的特徵圖*輸入數量
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LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 4. Manually determine: 自由設計
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LeNet 5

 Feature map 對應策略
 直接對應

 太過簡化，無法有效用到所有的特徵

 Aggregated
 產生多個feature maps再疊加，有較多的特徵，且保留對接的層數

 Full conv
 最多特徵，然而參數過多無法控制

目前大宗的都是Aggregated策略
 i.e., shown in previous slides
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