
Chih-Chung Hsu (許志仲)
Institute of Data Science
National Cheng Kung University
https://cchsu.info

CONVOLUTIONAL NEURAL
NETWORKS

Last time: Neural Networks
Linear score function: 2-layer Neural Network

2024/3/12 Chih-Chung Hsu@ACVLab 2

x hW1 sW2

3072 100 10

2

Next: Convolutional Neural Networks

2024/3/12 Chih-Chung Hsu@ACVLab 3

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture1

3

The Mark I Perceptron machine was
the first implementation of the
perceptron algorithm.

The machine was connected to a camera that used
20×20 cadmium sulfide photocells to produce a 400-
pixel image.

recognized
letters of the alphabet

update rule:

Frank Rosenblatt, ~1957: Perceptron

A bit of history...

2024/3/12 Chih-Chung Hsu@ACVLab 4

This image by Rocky Acosta is licensed under CC-BY 3.0

4

https://creativecommons.org/licenses/by/3.0/us/

Widrow and Hoff, ~1960:Adaline/Madaline

A bit of history...

2024/3/12 Chih-Chung Hsu@ACVLab 55

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical
Report with permission from Stanford University Special Collections.

http://www-isl.stanford.edu/%7Ewidrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/%7Ewidrow/papers/c1960adaptiveswitching.pdf

Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...

2024/3/12 Chih-Chung Hsu@ACVLab 6

Illustration of Rumelhart et al., 1986 by Lane McIntosh,
copyright CS231n 2017

6

[Hinton and Salakhutdinov 2006]

Reinvigorated research in
Deep Learning

A bit of history...

2024/3/12 Chih-Chung Hsu@ACVLab 7
Illustration of Hinton and Salakhutdinov 2006 by Lane

McIntosh, copyright CS231n 2017

First strong results

2024/3/12 Chih-Chung Hsu@ACVLab 8

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright
CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Imagenet classification with deep convolutional
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

2024/3/12 Chih-Chung Hsu@ACVLab 9

A bit of history:

Hubel & Wiesel,
1959
RECEPTIVE FIELDS OF SINGLE
NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR
INTERACTION
AND FUNCTIONAL ARCHITECTURE IN THE
CAT'S VISUAL CORTEX

1968... Cat image by CNX OpenStax is licensed
under CC BY 4.0; changes made

1122

A bit of history

2024/3/12 Chih-Chung Hsu@ACVLab 10

Topographical mapping in the cortex:
nearby cells in cortex represent
nearby regions in the visual field

Retinotopy images courtesy of Jesse Gomez in the
Stanford Vision & Perception NeuroscienceLab.

Human brain

Visual
cortex

Hierarchical organization

2024/3/12 Chih-Chung Hsu@ACVLab 11

Illustration of hierarchical organization in early visual
pathways by Lane McIntosh, copyright CS231n2017

A bit of history:

2024/3/12 Chih-Chung Hsu@ACVLab 12

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling

A bit of history:

2024/3/12 Chih-Chung Hsu@ACVLab 13

Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

A bit of history:

2024/3/12 Chih-Chung Hsu@ACVLab 14

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”
1177

ImageNet Classification
with Deep Convolutional
Neural Networks
[Krizhevsky, Sutskever,
Hinton, 2012]

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 15

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 16

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with
permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]
Figures copyright Clement Farabet, 2012.
Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 17

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

self-driving cars

This image by GBPublic_PR is
licensed under CC-BY 2.0

https://www.flickr.com/photos/gbpublic/8178512552
https://creativecommons.org/licenses/by/2.0/

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 18

[Taigman et al. 2014]

[Simonyan et al. 2014] Figures copyright Simonyan et al., 2014.
Reproduced with permission.

Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma McIntosh,
used with permission. Figure and architecture not from Taigman et al. 2014.

Illustration by Lane McIntosh,
photos of Katie Cumnock
used with permission.

https://github.com/tensorflow/models/tree/master/inception

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 19

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,
and Xiaoshi Wang, 2014. Reproduced withpermission.

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 20

[Levy et al. 2016]

[Sermanet et al. 2011]
[Ciresan et al.]

Photos by LaneMcIntosh.
Copyright CS231n2017.

[Dieleman et al. 2014]
From left to right: public domain by NASA, usage permitted by

ESA/Hubble, public domain by NASA, and public domain.

Figure copyright Levy et al. 2016.
Reproduced withpermission.

https://pixabay.com/en/galaxies-overlapping-galaxies-601015/

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

This image by Christin Khan is in the public domain
and originally came from the U.S. NOAA.

Photo and figure by Lane McIntosh; not actual
example from Mnih and Hinton, 2010paper.

Fast-forward to today: ConvNets are everywhere

2024/3/12 Chih-Chung Hsu@ACVLab 21

[Vinyals et al., 2015]
[Karpathy and Fei-Fei,
2015]

Image
Captioning

2024/3/12 Chih-Chung Hsu@ACVLab 22

Minor errors Somewhat related

A white teddy bear sitting in
the grass

A man riding a wave on
top of a surfboard

A man in a baseball
uniform throwing a ball

A cat sitting on a
suitcase on the floor

A woman is holding a
cat in her hand

All images are CC0 Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson usingNeuraltalk2

A woman standing on a
beach holding a surfboard

Correct

https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach
from a blog post by Google Research.

Original image is CC0 public domain
Starry Night and Tree Roots by Van Gogh are in the public domain
Bokeh image is in the public domain
Stylized images copyright Justin Johnson, 2017;
reproduced with permission

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016
Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017

2024/3/12 Chih-Chung Hsu@ACVLab 23

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://pixabay.com/en/san-francisco-california-city-210230/
https://pixabay.com/en/bokeh-abstract-background-blur-21951/

CONVOLUTIONAL NEURAL NETWORKS

(First without the brain stuff)

Convolutional Neural Networks捲積神經網路

 Also known as CNN, ConvNet, DCN

 CNN = a multi-layer neural network with
 Local connectivity
 Weight sharing
 Convolution operation

 Parameters reduction

保留Spatial information
 Pixel之間的關係

2024/3/12 Chih-Chung Hsu@ACVLab 25

Definition of Terms in Deep Learning

2024/3/12 Chih-Chung Hsu@ACVLab 26

Neurons
Activation function

非線性函數

Connection
Weights (權重)

Parameters (參數)

餵資料
(Data)

吐答案
(Label)

Number of parameters in DNN

 A lot of number of weights need to be optimized
 Data: image (100*100=10000), 7-layer NN

 Assumed you have 60,000 training samples
 Layer 1-6: 5000 neuros, last layer: 50 neuros
 10000*5000+7*(5000*5000)+5000*50 parameters …
 #parameters = 227550000 for one sample

 Total parameters to be learned from all samples
 227550000 * 60000

 Weight precision: 32 bit (4 byte)

 So you may aware that we have enough computational
resource
 As the case, we need 5XX GB memory per image!!
 5XX GB GPU memory, do you have one?

 CNN today
 Reduce the number of parameters as well as improve the performance on image type data

2024/3/12 Chih-Chung Hsu@ACVLab 27

Step 1: Local Connectivity

 Assumed that the input neurons: 7

 #nodes in 2nd layer: 3

 #Parameters
 Global connectivity: 3 x 7 = 21
 Local connectivity: 3 x 3 = 9

2024/3/12 Chih-Chung Hsu@ACVLab 28

Input layer

Hidden layer
neurons

Global connectivity
“Fully-connected layer”

Local connectivity
“Local connected layer”

Step 2: Weight Sharing

 Assumed that the input neurons: 7

 #nodes in 2nd layer: 3

 #Parameters
 Without weight sharing: 3 x 3 = 9
 With weight sharing : 3 x 1 = 3

2024/3/12 Chih-Chung Hsu@ACVLab 29

Input layer

Hidden layer

w1
w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing
“Local connected layer”

With weight sharing
“Convolutional Layer”

w1
w2

w3 w1
w2

w3

w1

w2
w3

convolution kernel:
Use a small kernel to
convolve whole image to
extract their “local feature”

Weight sharing?

 Just apply “convolution operation”
 Improve the performance for images
 Reduce #parameters

2024/3/12 Chih-Chung Hsu@ACVLab 30

100 125 126

110 125 125

115 125 126

100 125 126 50 210 211 250 188 158

1. Conv: Keep the relation in 2D
2. Vectorization: keep horizontal relation only

Convolution Operation

 Conv, is based on so-called Filter/Kernel to extract the local features from an
image
 Extract the local “variation”

 Sample: get the line pattern from an image

2024/3/12 Chih-Chung Hsu@ACVLab 31

Para!

Reduce the #para

How many para do we
need for an image?

ANS: 9
A kernel can scan whole
image to extract their
local features

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1
1:

2:

3:

…

7:

8:

9:

…
13:

14:

15:

…
Only connect to 9
input, not fully
connected

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

Less parameters!

2024/3/12 Chih-Chung Hsu@ACVLab 32

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:

…
13:

14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Less parameters!

Even less parameters!
2024/3/12 Chih-Chung Hsu@ACVLab 33

Visualization on convolution

 2D-Convolution
 Filtering
 Kernel
 Weighted moving sum

2024/3/12 Chih-Chung Hsu@ACVLab 34

Input Feature Map

.

.

.

Map N

Map 1

M convolutions

CNN IN STRUCTURE VIEW

Chih-Chung Hsu@ACVLab 35

3072
1

2024/3/12 Chih-Chung Hsu@ACVLab 36

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

3072
1

2024/3/12 Chih-Chung Hsu@ACVLab 37

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

32

3

2024/3/12 Chih-Chung Hsu@ACVLab 38

Convolution Layer

32x32x3 image -> preserve spatial structure

width

height

32
depth

2024/3/12 Chih-Chung Hsu@ACVLab 39

Convolution Layer

32

3

32x32x3 image

5x5x3 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

2024/3/12 Chih-Chung Hsu@ACVLab 40

Convolution Layer
Filters always extend the full
depth of the input volume

32

3

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

32x32x3 image

5x5x3 filter

32

Convolution Layer

2024/3/12 Chih-Chung Hsu@ACVLab 41

32x32x3 image
5x5x3 filter

32

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

3

32

32
3

Convolution Layer

2024/3/12 Chih-Chung Hsu@ACVLab 42Lecture 5 -

32

32
3

Convolution Layer

2024/3/12 Chih-Chung Hsu@ACVLab 43Lecture 5 -

32

32
3

Convolution Layer

2024/3/12 Chih-Chung Hsu@ACVLab 44Lecture 5 -

32

32
3

Convolution Layer

2024/3/12 Chih-Chung Hsu@ACVLab 45Lecture 5 -

32

Convolution Layer

2024/3/12 Chih-Chung Hsu@ACVLab 46

32x32x3 image
5x5x3 filter

32

convolve (slide) over all
spatial locations

3 1

28

28

Feature map

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

1

28

28

consider a second, green filter

2024/3/12 Chih-Chung Hsu@ACVLab 4735

Feature map

32

32

3

Convolution Layer

6

28

28

2024/3/12 Chih-Chung Hsu@ACVLab 48

For example, if we had 6 5x5 filters, we’ll get 6 separate
activation maps:

We stack these up to get a “new image” of size 28x28x6!

Feature maps

2024/3/12 Chih-Chung Hsu@ACVLab 49

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

2024/3/12 Chih-Chung Hsu@ACVLab 50

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2
……

Those are the network
parameters to be learned.

Matrix

Matrix

Each filter detects a small
pattern (3 x 3). Property 1

2024/3/12 Chih-Chung Hsu@ACVLab 51

CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1
Filter 1

3 -1

stride=1

2024/3/12 Chih-Chung Hsu@ACVLab 52

CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

3 -3

If stride=2

We set stride=1 below

Filter 1

2024/3/12 Chih-Chung Hsu@ACVLab 53

CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Property 2
2024/3/12 Chih-Chung Hsu@ACVLab 54

CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do the same process
for every filter

stride=1

4 x 4 image

Feature
Map

Filter 1

2024/3/12 Chih-Chung Hsu@ACVLab 55

CNN – Colorful image

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1 Filter 1

-1 1 -1
-1 1 -1
-1 1 -1 Filter 2

1 -1 -1
-1 1 -1
-1 -1 1

1 -1 -1
-1 1 -1
-1 -1 1

-1 1 -1
-1 1 -1
-1 1 -1

-1 1 -1
-1 1 -1
-1 1 -1

Colorful image

2024/3/12 Chih-Chung Hsu@ACVLab 56

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

image
convolutio
n

-1 1 -1
-1 1 -1
-1 1 -1

1 -1 -1
-1 1 -1
-1 -1 1

1x

2x

……

36x

……

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-
connected

2024/3/12 Chih-Chung Hsu@ACVLab 57

The whole CNN

Fully Connected
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flatten

Can repeat
many times

2024/3/12 Chih-Chung Hsu@ACVLab 58

2024/3/12 Chih-Chung Hsu@ACVLab 59

Preview
[Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman2014].

Preview

2024/3/12 Chih-Chung Hsu@ACVLab 60

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright AndrejKarpathy.

one filter =>
one activation map

2024/3/12 Chih-Chung Hsu@ACVLab 61

preview:

2024/3/12 Chih-Chung Hsu@ACVLab 62

2024/3/12 Chih-Chung Hsu@ACVLab 63

A closer look at spatial dimensions:

32

3

32x32x3 image
5x5x3 filter

32

convolve (slide) over all
spatial locations

activation map

1

28

28

7

7x7 input (spatially)
assume 3x3 filter

7

2024/3/12 Chih-Chung Hsu@ACVLab 64

A closer look at spatial dimensions:

7

7x7 input (spatially)
assume 3x3 filter

7

2024/3/12 Chih-Chung Hsu@ACVLab 65

A closer look at spatial dimensions:

7

7x7 input (spatially)
assume 3x3 filter

7

2024/3/12 Chih-Chung Hsu@ACVLab 66

A closer look at spatial dimensions:

7

7x7 input (spatially)
assume 3x3 filter

7

2024/3/12 Chih-Chung Hsu@ACVLab 67

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

2024/3/12 Chih-Chung Hsu@ACVLab 68

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

2024/3/12 Chih-Chung Hsu@ACVLab 69

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

2024/3/12 Chih-Chung Hsu@ACVLab 70

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

2024/3/12 Chih-Chung Hsu@ACVLab 71

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

2024/3/12 Chih-Chung Hsu@ACVLab 72

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

2024/3/12 Chih-Chung Hsu@ACVLab 73

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

N

N

F

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

2024/3/12 Chih-Chung Hsu@ACVLab 74

2024/3/12 Chih-Chung Hsu@ACVLab 75

In practice: Common to zero pad the border

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

2024/3/12 Chih-Chung Hsu@ACVLab 76

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

2024/3/12 Chih-Chung Hsu@ACVLab 77

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Remember back to…

2024/3/12 Chih-Chung Hsu@ACVLab 78

Examples time

2024/3/12 Chih-Chung Hsu@ACVLab 79

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Examples time

2024/3/12 Chih-Chung Hsu@ACVLab 80

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Examples time

2024/3/12 Chih-Chung Hsu@ACVLab 81

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples time:

2024/3/12 Chih-Chung Hsu@ACVLab 82

Number of parameters in this layer? each
filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760 (+1 for bias)

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Convolution layer: summary

2024/3/12 Chih-Chung Hsu@ACVLab 83Lecture 5 -

Common settings:
K = (powers of 2, e.g. 32, 64, 128, 512

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

2024/3/12 Chih-Chung Hsu@ACVLab 84

(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

2024/3/12 Chih-Chung Hsu@ACVLab 85

Example: CONV layer in PyTorch

PyTorch is licensed under BSD 3-clause.

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

2024/3/12 Chih-Chung Hsu@ACVLab 86

Example: CONV layer in Keras

Keras is licensed under the MIT license.

https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE

2024/3/12 Chih-Chung Hsu@ACVLab 87

The brain/neuron view of CONV Layer

32x32x3 image
5x5x3 filter

32

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

32

3

2024/3/12 Chih-Chung Hsu@ACVLab 88

The brain/neuron view of CONV Layer

32x32x3 image
5x5x3 filter

32

It’s just a neuron with local
connectivity...

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

32

3

2024/3/12 Chih-Chung Hsu@ACVLab 89

The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

2024/3/12 Chih-Chung Hsu@ACVLab 90

The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume5

3072
1

2024/3/12 Chih-Chung Hsu@ACVLab 91

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Each neuron
looks at the full
input volume

two more layers to go: POOL/FC

2024/3/12 Chih-Chung Hsu@ACVLab 92

2024/3/12 Chih-Chung Hsu@ACVLab 93

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

2024/3/12 Chih-Chung Hsu@ACVLab 94

MAX POOLING

Parameters and convolutions

2024/3/12 Chih-Chung Hsu@ACVLab 95

2024/3/12 Chih-Chung Hsu@ACVLab 96

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as
in ordinary Neural Networks

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

2024/3/12 Chih-Chung Hsu@ACVLab 97

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Backpropagation

Now, lets assume the function f is a convolution between Input X and a Filter
F. Input X is a 3x3 matrix and Filter F is a 2x2 matrix, as shown below:

2024/3/12 Chih-Chung Hsu@ACVLab 98
Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Backpropagation

 Convolution between Input X and Filter F, gives us an output O. This can be
represented as

2024/3/12 Chih-Chung Hsu@ACVLab 99
Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Backpropagation (Forward part)

2024/3/12 Chih-Chung Hsu@ACVLab 100
Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Backpropagation (Forward part)

 So similar processes can be applied in anywhere

2024/3/12 Chih-Chung Hsu@ACVLab 101
Ref: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Summary

 ConvNets stack CONV,POOL,FC layers

 Trend towards smaller filters and deeper architectures

 Trend towards getting rid of POOL/FC layers (just CONV)

Historically architectures looked like
 [(CONV-RELU)*N-POOL]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet have challenged this paradigm

2024/3/12 Chih-Chung Hsu@ACVLab 102

RECURRENT NETWORKS

2024/3/12 Chih-Chung Hsu@ACVLab 103

Vanilla Neural Networks

10
4

“Vanilla” Neural Network

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

10
5

Recurrent Neural Networks: Process Sequences

e.g. action prediction
sequence of video frames -> action class

10
6

Recurrent Neural Networks: Process Sequences

E.g. Video Captioning
Sequence of video frames ->
caption

10
7

Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level

10
8

Sequential Processing of Non-Sequence Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW:A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka,Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra,
2015. Reproduced with permission.

10
9

Classify images by taking a
series of “glimpses”

Sequential Processing of Non-Sequence Data

Gregor et al, “DRAW:A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission

11
0

Generate images one piece at a time!

LENET

Chih-Chung Hsu@ACVLab 111

Build a Deep Convolution Neural Network

 It’s a multilayer CNN:
 每一層 (Layer) 代表 N 個不同的 Kernel 計算出來的Feature maps，因此每一層會有 N

Channels
 層與層的連結：上一層的 Feature maps，經過 K 個不同 Kernel 計算得出下一層的 K 個

Feature maps (K channels)

最終，由於CNN每個 Layer 是一個4-D結構
 [Batch size × Width × Height × #Channels]
 將每個 Channel 都拉成 Vector，在把所有的 Vector Aggregate 起來

2024/3/12 Chih-Chung Hsu@ACVLab 112

LeNet5

 Introduced by Yann LeCun.

Raw image of 32 × 32 pixels as input

 The size of kernels：5*5

2024/3/12 Chih-Chung Hsu@ACVLab 113

LeNet5

C1, C3, C5 : Convolutional layer.

 5 × 5 Convolution matrix.

 S2 , S4 : Subsampling layer.

 Subsampling by factor 2.

 F6 : Fully connected layer.

2024/3/12 Chih-Chung Hsu@ACVLab 114

LeNet5

輸入圖，先用6個 Kernels對圖做
Convolution，獲得6張特徵圖

每個 Convolution layer 都是拿來學 “特徵”
 C1, C3, and C5 layers

回想捲積 Conv
 不同的 Kernel (Filter)，會得到不同的影像
結果: 特徵

所有的 C 、FC，都會經過一次的
Activation function
 Sigmoid by default

2024/3/12 Chih-Chung Hsu@ACVLab 115

LeNet5: Subsampling (Pooling)

2024/3/12 Chih-Chung Hsu@ACVLab 116

LeNet5

C5 是怎麼回事?
 注意，S4已經是 5*5大小
 5*5 影像經過 5*5 的 Kernel

 1*1的結果，就是一個點

2024/3/12 Chih-Chung Hsu@ACVLab 117

LeNet5參數量計算

 C1

 Input size：32*32

 Kernel size：5*5

 #Kernels ：6

 Output size：28*28*6

 #Trainable variables： 5*5+1)*6=156

 #Connections ：(5*5+1)*6*(32-2-2)*(32-2-
2)=122304

 S2

 Input size ：28*28*6

 Kernel size ：2*2

 #Kernels：1

 Output size ：14*14*6

 #Trainable variables ：2*6=12，2=(w,b)

 #Connections：(2*2+1)*1*14*14*6 = 5880

2024/3/12 Chih-Chung Hsu@ACVLab 118

LeNet5

2024/3/12 Chih-Chung Hsu@ACVLab 119

LeNet5

2024/3/12 Chih-Chung Hsu@ACVLab 120

LeNet 5

如何從1張圖變成6張特徵圖?
 1 kernel (K) 產生一張特徵圖 (I*K)

2024/3/12 Chih-Chung Hsu@ACVLab 121

2024/3/12 Chih-Chung Hsu@ACVLab 122

LeNet 5

 6個Feature maps 轉到 16個 Feature maps?

2024/3/12 Chih-Chung Hsu@ACVLab 123

LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 1. 直接對應：少變多，複製，多變少，間隔取樣

2024/3/12 Chih-Chung Hsu@ACVLab 124

LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 2. Aggregated：一律產生對接個kernels的特徵圖，再疊加

 i.e., W*H*C 3*3*2 to 3*3*3, 27-dimensional dot product

2024/3/12 Chih-Chung Hsu@ACVLab 125

+

+

+

LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 3. Full conv: 產生對接個kernels的特徵圖*輸入數量

2024/3/12 Chih-Chung Hsu@ACVLab 126

LeNet 5

 6個Feature maps 轉到 16個 Feature maps?
 觀念：

 一個feature map當成是輸入，那麼對接的有16個kernels，會產生16個下一層feature maps
 那不就會有16*6個feature map?

 為了保持一致性，Conv. Layers有幾種策略
 4. Manually determine: 自由設計

2024/3/12 Chih-Chung Hsu@ACVLab 127

10

11

12

+

+

+

0

1

LeNet 5

 Feature map 對應策略
 直接對應

 太過簡化，無法有效用到所有的特徵

 Aggregated
 產生多個feature maps再疊加，有較多的特徵，且保留對接的層數

 Full conv
 最多特徵，然而參數過多無法控制

目前大宗的都是Aggregated策略
 i.e., shown in previous slides

2024/3/12 Chih-Chung Hsu@ACVLab 128

	Convolutional Neural Networks
	Last time: Neural NetworksLinear score function: 2-layer Neural Network
	Next: Convolutional Neural Networks
	A bit of history...
	A bit of history...
	A bit of history...
	A bit of history...
	First strong results
	 A bit of history:
	A bit of history
	Hierarchical organization
	A bit of history:
	A bit of history:
	A bit of history:
	Fast-forward to today: ConvNets are everywhere
	Fast-forward to today: ConvNets are everywhere
	Fast-forward to today: ConvNets are everywhere
	Fast-forward to today: ConvNets are everywhere
	Fast-forward to today: ConvNets are everywhere
	Fast-forward to today: ConvNets are everywhere
	Fast-forward to today: ConvNets are everywhere
	投影片編號 22
	投影片編號 23
	Convolutional Neural Networks�
	Convolutional Neural Networks 捲積神經網路
	Definition of Terms in Deep Learning
	Number of parameters in DNN
	Step 1: Local Connectivity
	Step 2: Weight Sharing
	Weight sharing?
	Convolution Operation
	投影片編號 32
	投影片編號 33
	Visualization on convolution
	CNN in Structure View
	Fully Connected Layer
	Fully Connected Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	Convolution Layer
	consider a second, green filter
	For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:
	Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions
	Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions
	CNN – Convolution
	CNN – Convolution
	CNN – Convolution
	CNN – Convolution
	CNN – Convolution
	CNN – Colorful image
	投影片編號 57
	The whole CNN
	Preview
	投影片編號 60
	投影片編號 61
	投影片編號 62
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	A closer look at spatial dimensions:
	投影片編號 74
	In practice: Common to zero pad the border
	In practice: Common to zero pad the border
	In practice: Common to zero pad the border
	投影片編號 78
	Examples time
	Examples time
	Examples time
	Examples time:
	Convolution layer: summary
	(btw, 1x1 convolution layers make perfect sense)
	Example: CONV layer in PyTorch
	Example: CONV layer in Keras
	The brain/neuron view of CONV Layer
	The brain/neuron view of CONV Layer
	The brain/neuron view of CONV Layer
	The brain/neuron view of CONV Layer
	Reminder: Fully Connected Layer
	投影片編號 92
	Pooling layer
	MAX POOLING
	Parameters and convolutions
	Fully Connected Layer (FC layer)-	Contains neurons that connect to the entire input volume, as in ordinary Neural Networks
	[ConvNetJS demo: training on CIFAR-10]
	Backpropagation
	Backpropagation
	Backpropagation (Forward part)
	Backpropagation (Forward part)
	Summary
	Recurrent Networks
	“Vanilla” Neural Network
	Recurrent Neural Networks: Process Sequences
	Recurrent Neural Networks: Process Sequences
	Recurrent Neural Networks: Process Sequences
	Recurrent Neural Networks: Process Sequences
	Sequential Processing of Non-Sequence Data
	Sequential Processing of Non-Sequence Data
	LeNet
	Build a Deep Convolution Neural Network
	LeNet5
	LeNet5
	LeNet5
	LeNet5: Subsampling (Pooling)
	LeNet5
	LeNet5參數量計算
	LeNet5
	LeNet5
	LeNet 5
	投影片編號 122
	LeNet 5
	LeNet 5
	LeNet 5
	LeNet 5
	LeNet 5
	LeNet 5

