DEEP LEARNING: IMAGE CLASSIFICATION

ACVLah

Top row, left to right: <u>Image</u> by <u>Roger H Goun is</u> licensed under <u>CC BY 2.0</u> <u>Image</u> is <u>CCO 1.0</u> public domain <u>Image</u> is <u>CCO 1.0</u> public domain <u>Image</u> is <u>CCO 1.0</u> public domain Middle row, left to right <u>Image</u> by <u>BGPHP Conference</u> is licensed under <u>CC BY 2.0</u>; changes made <u>Image</u> is <u>CCO 1.0</u> public domain <u>Image</u> by <u>NASA</u> is licensed under <u>CC BY 2.0</u> <u>Image</u> is <u>CCO 1.0</u> public domain Bottom row, left to right <u>Image</u> is <u>CC0 1.0</u> public domain <u>Image</u> by <u>Derek Keats</u> is licensed under <u>CC BY 2.0</u>; changes made <u>Image</u> is public domain <u>Image</u> is licensed under <u>CC-BY 2.0</u>; changes made

Normalized Cut (Shi & Malik, 1997)

Image is CC BY3.0

Image_is public domain

Image_is CC-BY2.0; changes made

Local Feature and Matching

Image is public domain

Image_is public domain

"SIFT" & Object Recognition, David Lowe, 1999

Spatial Pyramid Matching, Lazebnik, Schmid & Ponce, 2006

Image_is CC0 1.0 public domain

Deformable Part Model Felzenswalb, McAllester, Ramanan, 2009

Histogram of Gradients (HoG) Dalal & Triggs, 2005

PASCAL Visual Object Challenge

(20 object categories)

[Everingham et al. 2006-2012]

Image is CC0 1.0 public domain

Image is CC0 1.0 public domain

ACVLab@NCKU

Image by US Army is licensed under CC BY 2.0

Image by Kippelboy is licensed under CC BY-SA 3.0

Image by Christina C. is licensed under CC BY-SA 4.0

There are many visual recognition problems that are related to image classification, such as object detection, image captioning

This image is licensed under CC BY-NC-SA 2.0; changes made

- Object detection
- Action classification
- Image captioning

This image is licensed under CC BY-SA 2.0; changes made

Person

Hammer

This image is licensed under CC BY-SA 3.0; changes made

Convolutional Neural Networks (CNN) have become an important tool for object recognition

IM GENET Large Scale Visual Recognition Challenge

NEC-UIUC

[Lin CVPR 2011]

Lion image by Swissfrog is

licensed under CC BY 3.0

Convolutional Neural Networks (CNN) were not invented overnight

Ingredients for Deep Learning

GigaFLOPs per Dollar

The quest for visual intelligence goes far beyond object recognition...

Wall

ACVLab@NCKU

Johnson et al., "Image Retrieval using Scene Graphs", CVPR 2015

Figures copyright IEEE, 2015. Reproduced for educational purposes

This image is copyright-free United States government work

Example credit: <u>Andrej Karpathy</u>

Face Recognition of NIR Images

HOW?

IMAGE CLASSIFICATION PIPELINE

Image Classification: A core task in Computer Vision

<u>This image_</u>by <u>Nikita</u>is licensed under <u>CC-BY2.0</u> (assume given a set of possible labels) {dog, cat, truck, plane, ...}

97 93

This image by Nikita is licensed under CC-BY 2.0 e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

Challenges: Illumination

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image_is CC0 1.0 public domain

This image_is CC0 1.0_public domain

Challenges: Occlusion

This image_is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

Challenges: Deformation

<u>This image_by Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>

This image by Umberto Salvagnin is licensed under <u>CC-BY 2.0</u>

<u>This image</u>by <u>sare bear</u>is licensed under <u>CC-BY2.0</u>

<u>This image</u>by <u>Tom Thai</u>is licensed under <u>CC-BY2.0</u>

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Challenges: Context

Image source:

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-lq ?utm_source=linkedin_share&utm_medium=member_desktop_web

Modern computer vision algorithms

This image is CC0 1.0 public domain

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images
 - Example training set

```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```


NEAREST NEIGHBOR CLASSIFIER

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

First classifier: Nearest Neighbor

Training data with labels

2

query data

Distance Metric

Distance Metric to compare images


```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
```

using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

import	numpy	as	np	
--------	-------	----	----	--

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

ACVLab

Nearest Neighbor classifier

Memorize training data

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

loop over all test rows
for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

For each test image: Find closest train image Predict label of nearest image

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

What does this look like?

1-nearest neighbor

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K = 1

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$

L2 (Euclidean) distance

$$d_2(I_1, I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p\right)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

K = 1

K-Nearest Neighbors: try it yourself!

http://vision.stanford.edu/teaching/cs231n-demos/knn/

- What is the best value of **k** to use? What is the best distance to use?
- These are **hyperparameters**: choices about the algorithms themselves.
- Very problem/dataset-dependent.
- Must try them all out and see what works best.

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train			
Idea #2: choose hyperparameters that work best on test data	BAD : No idea how algorit will perform on new data		
train		test	
Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test	Better!		
train	validation	test	

Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test	
fold 1	fold 2	fold 3	fold 4	fold 5	test	
fold 1	fold 2	fold 3	fold 4	fold 5	test	

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	2	<u> </u>	*		-	X		The second	N.
automobile								P.	-
bird	-		1	-	4	1	2	1.	
cat	i			(SP)			1	-	-()
deer	1			m.	-	. w		5	
dog			×.	P	- (pr	Į.	1	12	91
frog			1	Cer.	27		Ţ	No.	(P
horse	-	et Vie	" Pt	5	A	1	S.	A.	TAN
ship	-	- 1	-	- 44	-19	-	142		
truck				200	and a	and and	1 es	P.	1

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane automobile bird cat deer dog frog horse ship truck

Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Setting Hyperparameters

Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k \sim = 7 works best for this data)

What does this look like?

What does this look like?

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

k-Nearest Neighbor with pixel distance never used.

K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and must predict labels on the test set

- The K-Nearest Neighbors classifier predicts labels based on the K nearest training examples
- Distance metric and K are hyperparameters Choose

hyperparameters using the validation set Only run on

the test set once at the very end!

LINEAR CLASSIfiER

Neural Network

This image_is CC0 1.0_public domain

[He et al. 2015]

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Input image

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Input image

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Geometric Viewpoint

Plot created using Wolfram Cloud

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1: 1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else

Linear Classifier – Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

<u>Cat image by Nikita i</u>s licensed under <u>CC-BY 2.0; Car image is CC0 1.0 p</u>ublic domain; <u>Frog image</u> is in the public domain

TODO:

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.

2.Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

A loss function tells how good our current classifier is

frog

cat

car

cat

car

frog

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $egin{array}{c} x_i & ext{is image and} \\ y_i & ext{is (integer) label} \end{array}$

ŏΖ

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss over the dataset is a average of loss over examples:

 $L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$

cat

car

frog

Multiclass SVM loss:

Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss: With some W the scores f(x, W) = Wx are: Loss $s_{y_i} - s_j$ (699) difference in scores between correct and cat 2.2 3.2 1.3 incorrect class $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$ 2.5 5.1 4.9 car $=\sum \max(0, s_j - s_{y_i} + 1)$ -3.1 2.0 -1.7 frog $j \neq y_i$

Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss: With some W the scores f(x, W) = Wx are: Loss $s_{y_i} - s_j$ (699) difference in scores between correct and cat 2.2 3.2 1.3 incorrect class $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$ 2.5 5.1 4.9 car $=\sum \max(0, s_j - s_{y_i} + 1)$ 2.0 -3.1 -1.7 frog $j \neq y_i$

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and y_i is the (integer) label,

ing the shorthand for the vector: $s = f(x_i, W)$

M loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1) + \max(0, 2.5 - (-3.1) + 1) = \max(0, 6.3) + \max(0, 6.6) = 6.3 + 6.6 = 12.9$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

- $L = rac{1}{N} \sum_{i=1}^N L_i$
- L = (2.9 + 0 + 12.9)/3 = **5.27**

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

cat car frog Losses: 1.3 **4.9** 2.0 0

Q2: what is the min/max possible SVM loss L_i ?

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_i , assuming N examples and C classes?

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including j = y_i)

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$

Multiclass SVM Loss: Example code

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$def __i_vectorized(x, y, W):$$

$$scores = W.dot(x)$$

$$margins = np.maximum(0, scores - scores[y] + 1)$$

$$margins[y] = 0$$

$$loss_i = np.sum(margins)$$

$$return \ loss_i$$

$$# First calculate scores$$

$$# Then calculate the margins s_{j} - s_{y_{i}} + 1$$

$$# only sum j is not y_{i}, so when j = y_{i}, set to zero. # sum across all j$$

SOFTMAX CLASSIFIER

Want to interpret raw classifier scores as **probabilities**

cat3.2car5.1frog-1.7

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

cat **3.2** car **5.1**

frog

5.1 -1.7

Softmax

Function

Softmax Classifier (Multinomial Logistic Regression)

unnormalized probabilities

Want to interpret raw classifier scores as probabilities

106

Softmax Classifier (Multinomial Logistic Regression)

Softmax

Function

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat

car

frog

5.1 -1.7

3.2

Softmax Classifier (Multinomial Logistic Regression)

1

cat car

frog

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i) \quad L_i = -\log(rac{e^{sy_i}}{\sum e^{s_i}})$$

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_j , assuming C classes?

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$
 $L_i = -\log(rac{e^{sy_i}}{\sum e^{s_i}})$

cat car

frog

3.2 5.1 -1.7

Q2: At initialization all s will be approximately equal; what is the loss? A: $-\log(1/C) = \log(C)$, If C = 10, then L_i = $\log(10) \approx 2.3$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i = 0$

Q: What is the **softmax loss** and the **SVM** loss?

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores: [20, -2, 3] [20, 9, 9] [20, -100, -100] and $y_i = 0$ Q: What is the **softmax loss** and the **SVM** loss **if I double the correct class score from 10 -> 20**?

Coming up:

- Regularization
- Optimization

f(x,W) = Wx + b

GOOGLE CLOUD RESOURCE: COLAB

Run TF without GPU?

- Google COLAB (Colaboratory)
 - Only three steps
 - Having free GPU/TPLL resource if you have a good account.

Click right key on ipynb and find colab

Google 雲端硬碟	Q. 搜尋雲端硬碟	
新增 1.	我的雲端硬碟 -	
► 資料夾		擁有
 檔案上傳 資料夾上傳 	ample] Population Sample Report」的副本	我
■ Google 文件	網站資料	我
 ■ Google 試算表 ■ Google 簡報 	brilliantcode.net StructuredData	我
2. 更多	> Ⅲ Google 表單	
備份	Google 續圖 Google 我的地圖	
已使用 0 個位元組, 共 15 GB	□ Google 協作平台 3. ○ Colaboratory	
升級儲存空間	十 連結更多應用程式	

COLAB

- Free GPU (K80/V100) and TPU resource
 - 24G RAM (very large, compared to standard GPU)
 - RTX 2080 Ti
 - NTD 35,000
 - K80
 - NTD 180, 000
- You only can run a program on the free GPU 12 hours per day
 - Wait another 12 hours to access the free resource
- Runtime environment
 - Can be CPU/GPU/TPU

GPU Resource Usage

GPU vs TPU? TPU 為 Google 自家提出的加速硬體,照道理應該會比較快! 大家亦可試試看。

Check Whether The GPU Resource is Enabled

import tensorflow as tf

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

■若有使用到GPU,則會顯示

import tensorflow as tf device_name = tf.test.gpu_device_name() if device_name != '/device:GPU:0': raise SystemError('GPU device not found') print('Found GPU at: {}'.format(device_name))

➡ Found GPU at: /device:GPU:0

COLAB with Your Own Files

from google.colab import drive import os

drive.mount('/content/gdrive') os.chdir("/content/gdrive/My Drive") #更改路徑 os.getcwd() #查看當前路徑

Use ! To run bash shell in colab !ls

show your files

將上述程式碼貼到 COLAB 中,並根據【畫面指示】操作,就可以有與 GDRIVE連線的權限

Connect Google Drive with COLAB

!mkdir -p Drive !google-drive-ocamlfuse Drive

- 上述指令在於
 - 在 COLAB 中建立一個資料夾 Drive (遠端中)
 - 利用指令!google-drive-ocamlfuse,把你連結到的雲端硬碟,連結到 Drive 資料夾中
 - 換句話說,你存取 Drive 資料夾,等於存取你的雲端硬碟

GOOGLE CLOUD SERVICE: VISION (AUTOML)

2024/2/27ACVLab@NCKU

線上免費模型 (12個月免費)

https://cloud.google.com/vision

Google Cloud 選用 Google 的理由 解決方案 產品 定價 開始使用

AI & Machine Learning Products

Cloud Vision

運用強大且經過預先訓練的 API 模型,從圖片中獲取深入分析資料,也可以使用 AutoML Vision^{測試版}輕鬆訓練自訂的視覺模型。

查看這項產品的說明文件。

Cloud Vision

運用強大且經過預先訓練的 API 模型,從圖片中獲取深入分析資料,也可以使用 AutoML Vision^{測試版}輕鬆訓練自訂的視覺模型。

查看這項產品的說明文件。

AutoML 授權申請 (尚未有付費帳號)

免費試用 Google Cloud Platform

步驟2之1

國家/地區

台灣

服務條款

■ 我同意《Google Cloud Platform 服務條款》和所有適用服務和 API 的服務條款。我也已詳閱並同意遵守《Google Cloud Platform 免費試 用版的服務條款》。

必須勾選這個核取方塊才能提交表單

電子郵件最新消息

□ 我想要定期收到 Google Cloud 和 Google Cloud Partner 傳送的電子 郵件,隨時掌握相關新聞、產品動態和特價優惠。

 \mathbf{T}

AutoML 授權申請 (尚未有付費帳號)

- 必須有信用卡
 - 不會偷偷被扣款
- ■一般銀行的卡?
 - 台灣尚不支援
- ■其他方法?
 - ■請自行Google

1_		•	4
1	「宗仏	Ь	тι.
		/)	-0

每月自動付款

您採用的付費方式是每月結帳日定期自動扣款。

CVC

✔ 信用卡或簽帳金融卡地址同上

Cloud Vision (AutoML) 使用方法

■首先建立資料庫 (資料夾:類別名稱)

□ 名稱	修改日期	類型
👵 5498592	2019/3/15 上午 0	檔案資料夾
👵 5513628	2019/3/15 上午 0	檔案資料夾
👵 5540978	2019/3/15 上午 0	檔案資料夾

AutoML訓練自己資料庫方法

- 建立 Cloud Storage Bucket (CSB)
- ■建立 CSB 的權限
- ■上傳資料到自己的CSB
 - Including image files and their labels (.csv)
- 建立自己 CSB 的 Training dataset
- 訓練模型 & Testing

AutoML: 建立 CSB

■首先開啟 Cloud AutoML 以及 Storage 的 API

http://console.cloud.google.com/?cloud

- ■首先連結到 Google cloud 生控台 Console
 - PROJECT=\$(gcloud config get-value project) && BUCKET="\${PROJECT}-vcm"
 - gsutil mb -p \${PROJECT} -c regional -l us-central1 gs://\${BUCKET}

■ 建立 Service

PROJECT=\$(gcloud config get-value project) gcloud projects add-iam-policy-binding \$PROJECT \ -member="serviceAccount:custom-vision@appspot.gserviceaccount.com" \ -role="roles/ml.admin" gcloud projects add-iam-policy-binding \$PROJECT \ -member="serviceAccount:custom-vision@appspot.gserviceaccount.com" \ -role="roles/storage.admin"

建立自己的資料庫

■ 進入到 AutoML Vision 的<u>頁面</u>

\$	AutoML Vision BETA	faces 🛨 ADD IMAGES 👻 II. LABEL STATS 🎛 EXPORT DATA
:=	IMAGES TRAIN	EVALUATE PREDICT
Q	All images 66 Labeled 66 Unlabeled 0	 ✓ Label: 5513628 ✓ Select all images
	Add label	$ \begin{array}{c} 513628 \\ 5513628 \end{array} \begin{array}{c} 5513628 \\ 5513628 \end{array} \begin{array}{c} 5513628 \\ 5513628 \end{array} \begin{array}{c} 5513628 \\ 5513628 \end{array} \end{array} $

訓練MODEL

Learned Model

■ 可以馬上看Training 結果 · Predict 可以上傳照片並辨識資料

Comparison

	Tensorflow (Own PC)	COLAB (Tensorflow)	AutoML
執行速度	快	中	中 (要網路)
訓練速度	快	中	快(已上傳的話)
建立方法速度	慢	慢	超快
方便性	一般 (要寫程式)	優 (有網路就可)	優 (要註冊·未來要錢)
客製化彈性	優(自己建立模型)	優	無
辨識效能			高一點
任務置換	容易	容易	麻煩 (要換資料)
I/O效能	高 (SSD版)	低 (有限制)	很高
成本	一般(GPU的錢)	低 (只要網路)	中 (算訓練時間收費)